Answer:
Step-by-step explanation:
x + y = 10
22x + 14y = 172
-22x - 22y = -220
22x + 14y = 172
-8y = - 48
y = 6 ceramic vases
x + 6 = 10
x = 4 glass vases
Answer:
jajajajajjajajajajjajajajjajajajaj
Answer: look at the picture
Step-by-step explanation: Hope this help :D
Answer:
1st picture: (0,4)
The lines intersect at point (0,4).
2nd picture: Graph D
2x ≥ y - 1
2x - 5y ≤ 10
Set these inequalities up in standard form.
y ≤ 2x + 1
-5y ≤ 10 - 2x → y ≥ -2 + 2/5x → y ≥ 2/5x - 2
When you divide by a negative number, you switch the inequality sign.
Now you have:
y ≤ 2x + 1
y ≥ 2/5x - 2
Looking at the graphs, you first want to find the lines that intersect the y-axis at (0, 1) and (0, -2).
In this case, it is all of them.
Next, you would look at the shaded regions.
The first inequality says the values are less than or equal to. So you look for a shaded region below a line. The second inequality says the values are greater than or equal to. So you look for a shaded region above a line.
That would mean Graph B or D.
Then you look at the specific lines. You can see that the lower line is y ≥ 2/5x - 2. You need a shaded region above this line. You can see the above line is y ≤ 2x + 1. You need a shaded region below this line. That is Graph D.
9514 1404 393
Answer:
Step-by-step explanation:
You have to realize that the absolute value function will change the sign of its argument only if that argument is negative.
108. |x -7| = x -7 . . . . . true for x-7≥0
x ≥ 7 . . . . makes the statement true
__
1a. When m < 9, the value 6m is less than 54, so 6m-54 < 0. That means the absolute value function changes the sign of its argument:
54 -6m . . . . . simplified form for m < 9
__
1b. |y -x| = y -x . . . when y > x, the argument of the absolute value is positive