Answer:
x < -1 or x > 9
Step-by-step explanation:

Add 3 to both sides.

Simplify.

Divide both sides by 10.

Simplify.

Apply absolute value rule: If
then
or 
or 

Add 4 to both sides.

Simplify.


Add 4 to both sides.

Simplify.

Combine the intervals.
or 
Answer:
w<33/4
Step-by-step explanation:
8w-35<3-(5-4w)
8w-35<3-5+4w
8w-35<-2+4w
8w-4w-35<-2
4w-35<-2
4w<-2+35
4w<33
w<33/4
When you complete the synthetic division you get 9 as the remainder so your answer is A. 9
Work in image, sorry it’s super messy
Answer:
the answer would be b
Step-by-step explanation:
the other 2 have negatives and the 3rd option is whole so b
Step-by-step explanation:
<em>giv</em><em>en</em><em> </em>
<em>
</em>
<em>in</em><em> </em><em>or</em><em>der</em><em> </em><em>to</em><em> </em><em>mak</em><em>e</em><em> </em><em>multipli</em><em>cation</em><em> </em><em>easi</em><em>er</em><em> </em><em>we</em><em> </em><em>ne</em><em>ed</em><em> </em><em>to</em><em> </em><em>cha</em><em>nge</em><em> </em><em>the</em><em> </em><em>1</em><em>.</em><em>5</em><em> </em><em>into</em><em> </em><em>a</em><em> </em><em>whol</em><em>e</em><em> </em><em>number</em><em> </em><em>form</em><em>.</em>
<em>thus</em>
<em>
</em>
<em>
</em>
<em>First</em><em> </em><em>law</em><em> </em><em>of</em><em> </em><em>indic</em><em>es</em><em> </em><em>appli</em><em>ed</em><em> </em><em>there</em>
<em>=</em><em>(</em><em>1</em><em>5</em><em>×</em><em>1</em><em>0</em><em>^</em><em>3</em><em>)</em><em>(</em><em>8</em><em>×</em><em>1</em><em>0</em><em>^</em><em>8</em><em>)</em>
<em>=</em><em>(</em><em>1</em><em>5</em><em>×</em><em>8</em><em>)</em><em>(</em><em>1</em><em>0</em><em>^</em><em>3</em><em>×</em><em>1</em><em>0</em><em>^</em><em>8</em><em>)</em>
<em>=</em><em>1</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>3</em><em>+</em><em>8</em><em> </em><em>(</em><em> </em><em>firs</em><em>t</em><em> </em><em>law</em><em> </em><em>of</em><em> </em><em>indic</em><em>es</em><em>,</em><em> </em><em>whi</em><em>ch</em><em> </em><em>sta</em><em>tes</em><em> </em><em>that</em><em> </em><em>,</em><em> </em><em>num</em><em>bers</em><em> </em><em>o</em><em>f</em><em> the</em><em> </em><em>sa</em><em>me</em><em> </em><em>base</em><em> </em><em>multi</em><em>plying</em><em> </em><em>each</em><em> </em><em>o</em><em>ther</em><em>,</em><em> take</em><em> </em><em>on</em><em>e</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>base</em><em> </em><em>and</em><em> </em><em>add</em><em> </em><em>the</em><em> </em><em>expon</em><em>ent</em><em>.</em><em> </em><em>and</em><em> </em><em>clearly</em><em> </em><em>both</em><em> </em><em>1</em><em>5</em><em> </em><em>and</em><em> </em><em>8</em><em> </em><em>are</em><em> </em><em>in</em><em> </em><em>base</em><em> </em><em>1</em><em>0</em>
<em>=</em><em>1</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>1</em><em>1</em>
<em>=</em><em>1</em><em>.</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>2</em><em> </em><em>×</em><em>1</em><em>0</em><em>^</em><em>1</em><em>1</em>
<em>=</em><em>1</em><em>.</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>1</em><em>1</em><em>+</em><em>2</em>
<em>=</em><em>1</em><em>.</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>1</em><em>3</em>
<em>so</em><em> </em><em>the</em><em> </em><em>a</em><em>nswer</em><em> </em><em>is</em><em> </em><em>alt</em><em> </em><em>B</em>