Explanation:
High-energy electrons are transported from the chlorophyll to other molecules by electron carriers beginning with pheophytin, P0 (a form of chlorophyll), then A1 phylloquinone etc.
The chloroplast is an organelle attached to the membrane found in plants. This comprises many plasma membrane invaginations called the thylakoid membrane. It contains chlorophyll pigments, called granum in rows, while the organelle's internal areas are called the lumen. Water fills the granum and the stroma is created.
Further Explanation:
<em>During the light reaction: </em>
- Photosystem II (PSII) contains pigments which consume light energy. This energy is exchanged between pigments until it enters the reaction core and is moved to P680; this transfers an electron to a higher level of energy where it then travels to a molecule of acceptors.
- For those removed from photosystem II, water supplies the chlorophyll in plant cell with substitute electrons. Additionally, water (H2O) divided into H+ and OH-by light during photolysis acts as a source of oxygen along with functioning as a reducer.
- The electron moves down the electron transport chain via several electron carriers
- The e- is delivered (to PS I) where it has a continuous loss of energy. Such energy drives the drainage of H+ from the stroma to the thykaloid, which results in a gradient creation. The H+ pass down their curve, passing into the stroma by ATP synthase.
- ATP synthase converts ADP and Pi to the ATP molecule, which stores energy.
- The electron enters Photosystem I where it heads to P700 pigments. It's. This consumes light energy, transfers the electron to a higher energy level, and moves it on to an acceptor electron. This leaves room for another electron which is then replaced by a photosystem II electron.
- In the ETC the NADP molecule is reduced to NADPH by supplying H+ ions. NADP and NADPH are vital to the Calvin cycle, in which monosaccharides or glucose-like sugars are produced after several molecules have been modified.
Learn more about photosynthesis at brainly.com/question/4216541
Learn more about cellular life at brainly.com/question/11259903
#LearnWithBrainly
Lancelet is a chordate but not a vertebrate because it lacks a backbone
Explanation:
The subphyla of the phylum Chordata are - Vertebrata, Urochordata and cephalochordate
Those chordates with a structural backbone belong to Vertebrata.
Urochordates and cephalochordates lack a backbone and hence are termed invertebrate chordates.
Lancelet is an invertebrate chordate of the subphylum – Cephalochordata.
The lancelets consist of a notochord that extends right from the head till the tail at the dorsal surface. The notochord acts like the backbone and provides support and a semi-flexible structure to aid in the movement of the organism.
They lack a developed nervous system like vertebrates but only has a dorsal nerve tube
.
It does not include plant sources.
Answer: alpha
Explanation: Alpha particles are fast moving streams of positively charged particles that are shown to be Helium nuclei. They have a mass
number of 4 and an atomic number of 2 and a charge of +2. Alpha particles are represented as 4He2. When 238U92 becomes 234Th90, it emitted a helium nucleus 4He2. The equation for the decay is 238U92 ---> 234Th90 + 4He2.
I believe the answer would be A, because if water didn’t exist, there would be no presence of living things on earth. Water is a resource for life, thus, presence of living things.