1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
antoniya [11.8K]
3 years ago
6

The Freedom Trail is 2 1/2 miles long. Ana walked 5/8 mile from Boston Common to the Paul Revere House. Then, she walked 3/8 mil

e from the Paul Revere House to Copp's Hill Burying Ground. How many more miles did Ana walk to complete the trail to the USS Constitution?
Mathematics
1 answer:
Julli [10]3 years ago
5 0

Answer:

1 1/2 miles

Step-by-step explanation:

5/8+3/8 is 8/8, or 1 mile. She now has 1 1/2 miles left to go! (2 1/2-1=1 1/2)

You might be interested in
If the length of FG is 6 units, what is the length of EH?
QveST [7]

FG goes through the center of the circle, so FG is diameter.

d = 2r \\ r =  \dfrac{d}{2}  \\  \\ r =  \dfrac{6}{2}  = 3

EH=r=3

Answer: EH=3

4 0
3 years ago
Jerry had 45 tickets for games at a carnival.he used 1/3 of the tickets to play ball-toss game. He used 2/5 of the tickets to pl
MrRa [10]
45 / 3 = 15
45 - 15 = 30
30 / 5 = 6
6 x 2 = 12
30 - 12 = 18
The answer is D:18
7 0
3 years ago
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
What is the GCF of 24a^3 b and 36ab^2?<br><br> 2ab<br> 4a^3b<br> 12ab<br> 72a^3b^2
Oksi-84 [34.3K]
12ab will be the right answer.

Since 24a^3 = 12ab(2a^2)

And 36ab^2 = 12ab(3b)
6 0
3 years ago
Read 2 more answers
Felipe has ridden 48 miles of a bike course. The course is 60 miles long. What percentage did Felipe ridden so far
MatroZZZ [7]

Answer:

58

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • Anybody know the answer?
    13·1 answer
  • Choose the fraction that 4/20 represents in its simplest form
    13·1 answer
  • a company wants to design a cylindrical object that has a height of 10 centimeters and a volume of at least 2,000 cubic centimet
    10·1 answer
  • Solve for x 3x=36-6x
    5·1 answer
  • the width of a rectangle is 2 m less than the length. if the area of the rectangle is 48sq meters. what is the length and width
    5·1 answer
  • Please answer i will give you brainiest please answer asap!!!!!!!!!!
    5·2 answers
  • Which ratio forms a proportion with 7/14
    14·2 answers
  • What are the zeros of the quadratic equation (x-11)(x-5)=0​
    5·1 answer
  • I NEED HELP!!
    11·2 answers
  • PLEASE HELP!!!! see attachment below… I bet you cant solve this:
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!