1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRa [10]
3 years ago
12

How do you write 92% as a fraction, mixed number, or whole number?

Mathematics
2 answers:
d1i1m1o1n [39]3 years ago
8 0

Answer:

92/100, 0 \frac{92}{100}, 0.92

Step-by-step explanation:

Anika [276]3 years ago
3 0

92% as a fraction =

92/100

92% as a whole number =

100/92 = 0.92

You might be interested in
One cylinder has a volume that is 8 mc018-1.jpg less than mc018-2.jpg of the volume of a second cylinder. If the first cylinder’
Hatshy [7]
The anwser to it is 57



4 0
3 years ago
Solve the equation.
Dafna1 [17]

Hi there!

<u>Here are all the steps into solving this equation :</u>

\frac{9z+4}{5} <u>- 8</u> = 5.4

Add 8 on each side of the equation → 5.4 + 8 = 13.4

\frac{9z+4}{5} = 13.4

Multiply each side of the equation by 5 → 13.4 × 5 = 67

9z <u>+ 4</u> = 67

Subtract 4 from each side of the equation → 67 - 4 = 63

<u>9</u>z = 63

Divide each side of the equation by 9 → 63 ÷ 9 = 7

z = 7


There you go! I really hope this helped, if there's anything just let me know! :)

6 0
3 years ago
.. Which of the following are the coordinates of the vertices of the following square with sides of length a?
atroni [7]

Option A: O(0,0), S(0,a), T(a,a), W(a,0)

Option D: O(0,0), S(a,0), T(a,a), W(0,a)

Step-by-step explanation:

Option A: O(0,0), S(0,a), T(a,a), W(a,0)

To find the sides of a square, let us use the distance formula,

d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}

Now, we shall find the length of the square,

\begin{array}{l}{\text { Length } O S=\sqrt{(0-0)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a} \\{\text { Length } S T=\sqrt{(a-0)^{2}+(a-a)^{2}}=\sqrt{a^{2}}=a} \\{\text { Length } T W=\sqrt{(a-a)^{2}+(0-a)^{2}}=\sqrt{a^{2}}=a} \\{\text { Length } O W=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a}\end{array}

Thus, the square with vertices O(0,0), S(0,a), T(a,a), W(a,0) has sides of length a.

Option B: O(0,0), S(0,a), T(2a,2a), W(a,0)

Now, we shall find the length of the square,

\begin{aligned}&\text { Length } O S=\sqrt{(0-0)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a\\&\text {Length } S T=\sqrt{(2 a-0)^{2}+(2 a-a)^{2}}=\sqrt{5 a^{2}}=a \sqrt{5}\\&\text {Length } T W=\sqrt{(a-2 a)^{2}+(0-2 a)^{2}}=\sqrt{2 a^{2}}=a \sqrt{2}\\&\text {Length } O W=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a\end{aligned}

This is not a square because the lengths are not equal.

Option C: O(0,0), S(0,2a), T(2a,2a), W(2a,0)

Now, we shall find the length of the square,

\begin{array}{l}{\text { Length OS }=\sqrt{(0-0)^{2}+(2 a-0)^{2}}=\sqrt{4 a^{2}}=2 a} \\{\text { Length } S T=\sqrt{(2 a-0)^{2}+(2 a-2 a)^{2}}=\sqrt{4 a^{2}}=2 a} \\{\text { Length } T W=\sqrt{(2 a-2 a)^{2}+(0-2 a)^{2}}=\sqrt{4 a^{2}}=2 a} \\{\text { Length } O W=\sqrt{(2 a-0)^{2}+(0-0)^{2}}=\sqrt{4 a^{2}}=2 a}\end{array}

Thus, the square with vertices O(0,0), S(0,2a), T(2a,2a), W(2a,0) has sides of length 2a.

Option D: O(0,0), S(a,0), T(a,a), W(0,a)

Now, we shall find the length of the square,

\begin{aligned}&\text { Length OS }=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a\\&\text { Length } S T=\sqrt{(a-a)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a\\&\text { Length } T W=\sqrt{(0-a)^{2}+(a-a)^{2}}=\sqrt{a^{2}}=a\\&\text { Length } O W=\sqrt{(0-0)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a\end{aligned}

Thus, the square with vertices O(0,0), S(a,0), T(a,a), W(0,a) has sides of length a.

Thus, the correct answers are option a and option d.

8 0
3 years ago
Use the babylonian method to approximate square root of 24 to the nearest hundredth.
irina [24]
We will start with our guess of 12, since 12*2 = 24.
Divide 24 by 12; 24/12=2.  Average this answer with our guess:  (12+2)/2=7.  This is our new guess.
24/7=3.428571429.  Average this with our guess of 7:  (3.428571429+7)/2=5.214285715.  This is our new guess.
24/5.214285715=4.602739726.  Averaging with our guess:  (4.602739726+5.214285715)/2=4.90851272.  New guess!
24/4.90851272=4.889464766.  Averaging with our guess:  (4.889464766+4.90851272)/2=4.898988743.  New guess!  You can see as we go through our guesses are closer and closer to the same number...)
24/4.898988743=4.898970228.  Averaging:  (4.898970228+4.898988743)/2=4.898979486.  At this point our answer is the same every time down to the hundred-thousandth.  Our estimate to the nearest hundredth would be 4.90.
6 0
3 years ago
You can use a root to undo...
lutik1710 [3]

Answer:

multiplucation problem

Step-by-step explanation:.

8 0
3 years ago
Other questions:
  • If sin 20 degree=a and cos20 degree=b then which of the following represents the correct value of sin 70 degree in terms of a an
    15·1 answer
  • If a team scored 96 points while making 18 free throws, how many field goals were made?
    13·1 answer
  • Find the exact volume of the cylinder.
    7·2 answers
  • What percent is equivalent to StartFraction 1 Over 25 EndFraction? 4% 5% 20% 25%
    14·2 answers
  • PLEASE HELP MEEEEEEEEEEEEEEEEEEEEEEEEe
    9·2 answers
  • Using the pleading the square method find the vertex of the function f(x)=5x^2+10x+8
    6·1 answer
  • Is my answer correct? if not please tell me the correct answer.
    6·2 answers
  • Umaloja vendeu 2.800 calçado no mês passado, neste mês vendeu10% a mais. Quantos calçados foram ven- didos neste mês​
    5·1 answer
  • Negitive 1/5 n +7=2 solve quick first to get mark brainlest
    7·1 answer
  • How would I solve this
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!