Ok so i just did 56/14 and got 4. So this means 14 goes into 56 4 times, so now i did 4 x 2 and got 8. So the answer is 8 free cones.
Answer:
Get to 100% easly
Step-by-step explanation:
I'm assuming
is the shape parameter and
is the scale parameter. Then the PDF is
![f_X(x)=\begin{cases}\dfrac29xe^{-x^2/9}&\text{for }x\ge0\\\\0&\text{otherwise}\end{cases}](https://tex.z-dn.net/?f=f_X%28x%29%3D%5Cbegin%7Bcases%7D%5Cdfrac29xe%5E%7B-x%5E2%2F9%7D%26%5Ctext%7Bfor%20%7Dx%5Cge0%5C%5C%5C%5C0%26%5Ctext%7Botherwise%7D%5Cend%7Bcases%7D)
a. The expectation is
![E[X]=\displaystyle\int_{-\infty}^\infty xf_X(x)\,\mathrm dx=\frac29\int_0^\infty x^2e^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20xf_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac29%5Cint_0%5E%5Cinfty%20x%5E2e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
To compute this integral, recall the definition of the Gamma function,
![\Gamma(x)=\displaystyle\int_0^\infty t^{x-1}e^{-t}\,\mathrm dt](https://tex.z-dn.net/?f=%5CGamma%28x%29%3D%5Cdisplaystyle%5Cint_0%5E%5Cinfty%20t%5E%7Bx-1%7De%5E%7B-t%7D%5C%2C%5Cmathrm%20dt)
For this particular integral, first integrate by parts, taking
![u=x\implies\mathrm du=\mathrm dx](https://tex.z-dn.net/?f=u%3Dx%5Cimplies%5Cmathrm%20du%3D%5Cmathrm%20dx)
![\mathrm dv=xe^{-x^2/9}\,\mathrm dx\implies v=-\dfrac92e^{-x^2/9}](https://tex.z-dn.net/?f=%5Cmathrm%20dv%3Dxe%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx%5Cimplies%20v%3D-%5Cdfrac92e%5E%7B-x%5E2%2F9%7D)
![E[X]=\displaystyle-xe^{-x^2/9}\bigg|_0^\infty+\int_0^\infty e^{-x^2/9}\,\mathrm x](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle-xe%5E%7B-x%5E2%2F9%7D%5Cbigg%7C_0%5E%5Cinfty%2B%5Cint_0%5E%5Cinfty%20e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20x)
![E[X]=\displaystyle\int_0^\infty e^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cint_0%5E%5Cinfty%20e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
Substitute
, so that
:
![E[X]=\displaystyle\frac32\int_0^\infty y^{-1/2}e^{-y}\,\mathrm dy](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cfrac32%5Cint_0%5E%5Cinfty%20y%5E%7B-1%2F2%7De%5E%7B-y%7D%5C%2C%5Cmathrm%20dy)
![\boxed{E[X]=\dfrac32\Gamma\left(\dfrac12\right)=\dfrac{3\sqrt\pi}2\approx2.659}](https://tex.z-dn.net/?f=%5Cboxed%7BE%5BX%5D%3D%5Cdfrac32%5CGamma%5Cleft%28%5Cdfrac12%5Cright%29%3D%5Cdfrac%7B3%5Csqrt%5Cpi%7D2%5Capprox2.659%7D)
The variance is
![\mathrm{Var}[X]=E[(X-E[X])^2]=E[X^2-2XE[X]+E[X]^2]=E[X^2]-E[X]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BX%5D%3DE%5B%28X-E%5BX%5D%29%5E2%5D%3DE%5BX%5E2-2XE%5BX%5D%2BE%5BX%5D%5E2%5D%3DE%5BX%5E2%5D-E%5BX%5D%5E2)
The second moment is
![E[X^2]=\displaystyle\int_{-\infty}^\infty x^2f_X(x)\,\mathrm dx=\frac29\int_0^\infty x^3e^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20x%5E2f_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac29%5Cint_0%5E%5Cinfty%20x%5E3e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
Integrate by parts, taking
![u=x^2\implies\mathrm du=2x\,\mathrm dx](https://tex.z-dn.net/?f=u%3Dx%5E2%5Cimplies%5Cmathrm%20du%3D2x%5C%2C%5Cmathrm%20dx)
![\mathrm dv=xe^{-x^2/9}\,\mathrm dx\implies v=-\dfrac92e^{-x^2/9}](https://tex.z-dn.net/?f=%5Cmathrm%20dv%3Dxe%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx%5Cimplies%20v%3D-%5Cdfrac92e%5E%7B-x%5E2%2F9%7D)
![E[X^2]=\displaystyle-x^2e^{-x^2/9}\bigg|_0^\infty+2\int_0^\infty xe^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle-x%5E2e%5E%7B-x%5E2%2F9%7D%5Cbigg%7C_0%5E%5Cinfty%2B2%5Cint_0%5E%5Cinfty%20xe%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
![E[X^2]=\displaystyle2\int_0^\infty xe^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle2%5Cint_0%5E%5Cinfty%20xe%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
Substitute
again to get
![E[X^2]=\displaystyle9\int_0^\infty e^{-y}\,\mathrm dy=9](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle9%5Cint_0%5E%5Cinfty%20e%5E%7B-y%7D%5C%2C%5Cmathrm%20dy%3D9)
Then the variance is
![\mathrm{Var}[X]=9-E[X]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BX%5D%3D9-E%5BX%5D%5E2)
![\boxed{\mathrm{Var}[X]=9-\dfrac94\pi\approx1.931}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cmathrm%7BVar%7D%5BX%5D%3D9-%5Cdfrac94%5Cpi%5Capprox1.931%7D)
b. The probability that
is
![P(X\le 3)=\displaystyle\int_{-\infty}^3f_X(x)\,\mathrm dx=\frac29\int_0^3xe^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=P%28X%5Cle%203%29%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E3f_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac29%5Cint_0%5E3xe%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
which can be handled with the same substitution used in part (a). We get
![\boxed{P(X\le 3)=\dfrac{e-1}e\approx0.632}](https://tex.z-dn.net/?f=%5Cboxed%7BP%28X%5Cle%203%29%3D%5Cdfrac%7Be-1%7De%5Capprox0.632%7D)
c. Same procedure as in (b). We have
![P(1\le X\le3)=P(X\le3)-P(X\le1)](https://tex.z-dn.net/?f=P%281%5Cle%20X%5Cle3%29%3DP%28X%5Cle3%29-P%28X%5Cle1%29)
and
![P(X\le1)=\displaystyle\int_{-\infty}^1f_X(x)\,\mathrm dx=\frac29\int_0^1xe^{-x^2/9}\,\mathrm dx=\frac{e^{1/9}-1}{e^{1/9}}](https://tex.z-dn.net/?f=P%28X%5Cle1%29%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E1f_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac29%5Cint_0%5E1xe%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx%3D%5Cfrac%7Be%5E%7B1%2F9%7D-1%7D%7Be%5E%7B1%2F9%7D%7D)
Then
![\boxed{P(1\le X\le3)=\dfrac{e^{8/9}-1}e\approx0.527}](https://tex.z-dn.net/?f=%5Cboxed%7BP%281%5Cle%20X%5Cle3%29%3D%5Cdfrac%7Be%5E%7B8%2F9%7D-1%7De%5Capprox0.527%7D)
Step-by-step explanation:
Some expressions that are equivalent to this is: 1 - 1/5; 2 - 1 1/5; 3 - 2 1/5; etc.