Answer:
a) ![\cos(\theta) = \frac{\sqrt[]{33}}{7}](https://tex.z-dn.net/?f=%5Ccos%28%5Ctheta%29%20%3D%20%5Cfrac%7B%5Csqrt%5B%5D%7B33%7D%7D%7B7%7D)
b) ![\sin(\theta + \frac{\pi}{6})\frac{-3\sqrt[]{11}+4}{14}](https://tex.z-dn.net/?f=%5Csin%28%5Ctheta%20%2B%20%5Cfrac%7B%5Cpi%7D%7B6%7D%29%5Cfrac%7B-3%5Csqrt%5B%5D%7B11%7D%2B4%7D%7B14%7D)
c) ![\cos(\theta-\pi)=\frac{\sqrt[]{33}}{7}](https://tex.z-dn.net/?f=%5Ccos%28%5Ctheta-%5Cpi%29%3D%5Cfrac%7B%5Csqrt%5B%5D%7B33%7D%7D%7B7%7D)
d)![\tan(\theta + \frac{\pi}{4}) = \frac{\frac{-4}{\sqrt[]{33}}+1}{1+\frac{4}{\sqrt[]{33}}}](https://tex.z-dn.net/?f=%5Ctan%28%5Ctheta%20%2B%20%5Cfrac%7B%5Cpi%7D%7B4%7D%29%20%3D%20%5Cfrac%7B%5Cfrac%7B-4%7D%7B%5Csqrt%5B%5D%7B33%7D%7D%2B1%7D%7B1%2B%5Cfrac%7B4%7D%7B%5Csqrt%5B%5D%7B33%7D%7D%7D)
Step-by-step explanation:
We will use the following trigonometric identities


.
Recall that given a right triangle, the sin(theta) is defined by opposite side/hypotenuse. Since we know that the angle is in quadrant 2, we know that x should be a negative number. We will use pythagoras theorem to find out the value of x. We have that

which implies that
. Recall that cos(theta) is defined by adjacent side/hypotenuse. So, we know that the hypotenuse is 7, then
![\cos(\theta) = \frac{-\sqrt[]{33}}{7}](https://tex.z-dn.net/?f=%5Ccos%28%5Ctheta%29%20%3D%20%5Cfrac%7B-%5Csqrt%5B%5D%7B33%7D%7D%7B7%7D)
b)Recall that
, then using the identity from above, we have that
![\sin(\theta + \frac{\pi}{6}) = \sin(\theta)\cos(\frac{\pi}{6})+\cos(\alpha)\sin(\frac{\pi}{6}) = \frac{4}{7}\frac{1}{2}-\frac{\sqrt[]{33}}{7}\frac{\sqrt[]{3}}{2} = \frac{-3\sqrt[]{11}+4}{14}](https://tex.z-dn.net/?f=%5Csin%28%5Ctheta%20%2B%20%5Cfrac%7B%5Cpi%7D%7B6%7D%29%20%3D%20%5Csin%28%5Ctheta%29%5Ccos%28%5Cfrac%7B%5Cpi%7D%7B6%7D%29%2B%5Ccos%28%5Calpha%29%5Csin%28%5Cfrac%7B%5Cpi%7D%7B6%7D%29%20%3D%20%5Cfrac%7B4%7D%7B7%7D%5Cfrac%7B1%7D%7B2%7D-%5Cfrac%7B%5Csqrt%5B%5D%7B33%7D%7D%7B7%7D%5Cfrac%7B%5Csqrt%5B%5D%7B3%7D%7D%7B2%7D%20%3D%20%5Cfrac%7B-3%5Csqrt%5B%5D%7B11%7D%2B4%7D%7B14%7D)
c) Recall that
. Then,
![\cos(\theta-\pi)=\cos(\theta)\cos(\pi)+\sin(\theta)\sin(\pi) = \frac{-\sqrt[]{33}}{7}\cdot(-1) + 0 = \frac{\sqrt[]{33}}{7}](https://tex.z-dn.net/?f=%5Ccos%28%5Ctheta-%5Cpi%29%3D%5Ccos%28%5Ctheta%29%5Ccos%28%5Cpi%29%2B%5Csin%28%5Ctheta%29%5Csin%28%5Cpi%29%20%3D%20%5Cfrac%7B-%5Csqrt%5B%5D%7B33%7D%7D%7B7%7D%5Ccdot%28-1%29%20%2B%200%20%3D%20%5Cfrac%7B%5Csqrt%5B%5D%7B33%7D%7D%7B7%7D)
d) Recall that
and
. Then
![\tan(\theta+\frac{\pi}{4}) = \frac{\tan(\theta)+\tan(\frac{\pi}{4})}{1-\tan(\theta)\tan(\frac{\pi}{4})} = \frac{\frac{-4}{\sqrt[]{33}}+1}{1+\frac{4}{\sqrt[]{33}}}](https://tex.z-dn.net/?f=%5Ctan%28%5Ctheta%2B%5Cfrac%7B%5Cpi%7D%7B4%7D%29%20%3D%20%5Cfrac%7B%5Ctan%28%5Ctheta%29%2B%5Ctan%28%5Cfrac%7B%5Cpi%7D%7B4%7D%29%7D%7B1-%5Ctan%28%5Ctheta%29%5Ctan%28%5Cfrac%7B%5Cpi%7D%7B4%7D%29%7D%20%3D%20%5Cfrac%7B%5Cfrac%7B-4%7D%7B%5Csqrt%5B%5D%7B33%7D%7D%2B1%7D%7B1%2B%5Cfrac%7B4%7D%7B%5Csqrt%5B%5D%7B33%7D%7D%7D)
Answer:
Step-by-step explanation:
You didn't list the options from which we are to choose as your system of inequalities, but that doesn't matter...we'll come up with them on our own and then you can match them to your options. The first inequality is going to be about the number of hours worked. The second inequality is going to be about the money earned. Hours worked and money earned have to be in 2 different inequalities because they are not the same. If x is one job and y is the other, and the combination of these jobs cannot be more than 12 hours total, then the inequality for this is:
x + y ≤ 12
That represents the hours worked. As far as the money goes, she makes $8 per hour, x, at the first job, and $9 per hour, y, at the second job. She wants the combination of these wages to be at least $100. The inequality that represents the money earned is:
8x + 9y ≥ 100
That is the system that represents your situation.
Answer:
option a) 30 : 19
Step-by-step explanation:

<em><u>Ratio of length to width:</u></em>
<em><u></u></em>

$210.67 is the answer. Rounded, of course, from 210.666666667
Answer: Your answer should be 12:23
Step-by-step explanation: on the clock the time is 2:25. You simply subtract 2:48 and 2:25. 48-25=23 and the twos cancel out but instead of putting zero you put 12 since your going backwards two on the clock. Hope it helps!!!