One way to test this is by using the equation for Ken on Maureen. Let's say in the first hour,
f(t) = 200(0.976)^1 = 195.2 mg
In the second hour,
f(t) = 200(0.976)^2 = 190.52 mg
In the third hour,
f(t) = 200(0.976)^3 = 186 mg
If you compare this with Maureen's data which is 150, 90 and 54 for the first, second and third hour, respectively, you will see that Maureen's rate is much faster. However, you cannot tell by what factor because the function is exponential, not a multiple. There is no constant difference between their rates. Therefore, we only know that Maureen's rate is much faster.
The answer is <span>Maureen's body eliminated the antibiotic faster than Ken's body.</span>
Answer:
For B the answer is 1 : 30. For A the graph is Y goes up 2 for every 60 on the X.
In this equation there are few key numbers, thankfully XD, so it does not take too long to figure out that the 0.04 is clearly a tax on the repairs as 30h is representing the hours spent repairing Kimber's phone.