Answer:
4*x^4*y^22
Step-by-step explanation:
Your goal here is to REDUCE the given expression to simplest terms.
One way in which to approach this problem would be to rewrite (2x^2y^10)^3 as: (2x^2*y^8)*y^2*(2x^2*y^10)^2.
Dividing this rewritten expression by 2x^2*y^8 results in:
y^2(2x^2*y^10)^2.
We now need to raise (2x^2*y^10) to the power 2. Doing this, we get:
4x^4*y^20.
Multiply this by y^2 (see above):
y^2*4x^4*y^20
The first factor is 4: 4y^2*x^4*y^20. This is followed by the product of y^2 and y^20: 4*y^22*x^4
Finally, this should be re-written as
4*x^4*y^22
Another way of doing this problem would involve expanding the numerator fully and then cancelling out like factors:
8*x^6*y^30 4*x^4*y^22
----------------- = ------------------ = 4*x^4*y^22
2x^2y^8 1
Answer:
6
Step-by-step explanation:
4 = 24 / 6
Answer:
15 rentals
Step-by-step explanation:
You can (and may be expected to) set up an equation that equates the total cost at one store to the total cost at the other store. When you work through the solution of this equation, you find that the "break even" number of rentals is the ratio of the difference in fixed cost (setup fee) to the difference in per-use cost (rental charge).
Here, that ratio is ...
(15.00 -7.50)/(2.25 -1.75) = 7.50/0.50 = 15
15 rentals will make the total costs the same.
Answer:
the second one (Diego)
Step-by-step explanation:
7a-3a
5b+4b
Answer:
1. 8
2. 0.49
3. 7
4. 0.52
5. 0.43
6. 28
Step-by-step explanation:
I did the math you are welcome.