We analyze the chart and observe that the linear function is

, since this relation holds for all values in the table. Drawing this line over the quadratic function shows that they intersect
twice, at
both the positive and negative x-coordinates.This is by far the easiest way to solve this problem, but if you're interested in learning how to do it algebraically, read on! To prove this more rigorously, we can find that the equation of the parabola is
Substituting in

, we find that
the intersection points occur where 
, or

or

This equation doesn't factor nicely, so we use the
quadratic formula to learn that

Hence, the x-coordinates of the intersection points are

, which is
positive, and

, which is
negative. This proves that there are intersection points on both ends of the axis.
Answer:
the answer is 95.0 i took the quiz Yesturday.
Step-by-step explanation:
Answer:
The 84% confidence interval for the population proportion that claim to always buckle up is (0.74, 0.80).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the z-score that has a p-value of
.
They randomly survey 387 drivers and find that 298 claim to always buckle up.
This means that 
84% confidence level
So
, z is the value of Z that has a p-value of
, so
.
The lower limit of this interval is:

The upper limit of this interval is:

The 84% confidence interval for the population proportion that claim to always buckle up is (0.74, 0.80).
<span>5 x 4 x 3 x 2 x 1 = 120
The first person can move 5 positions since he is first. The second person can move 4 positions since one is already occupied, and so on...</span><span />