Answer:
The formula for calculating the size of an interior angle is: interior angle of a polygon = sum of interior angles ÷ number of sides. The sum of exterior angles of a polygon is 360°. The formula for calculating the size of an exterior angle is: exterior angle of a polygon = 360 ÷ number of sides.Properties of exterior angles. The sum of exterior angle and interior angle is equal to 180 degrees.
Step-by-step explanation:
I asked Siri...
Lines that overlap each other opposite like a T or +
Answer:
1 75/100 or 3/4
Step-by-step explanation:
if you simplify 1 75/100 its 3/4
Answer:

Step-by-step explanation:
We need to use the formula to calculate the probability of (A or B) where
A=Probability a student likes pepperoni
B=Probability a student likes olive
A and B =Probability a student likes both toppings in a pizza
A or B =Probability a student likes pepperoni or olive (and maybe both), a non-exclusive or
The formula is

Since 6 students like pepperoni out of 9:

Since 4 students like olive out of 9:

Since 3 students like both toppings out of 9

Then we have


Answer:
0.362
Step-by-step explanation:
When drawing randomly from the 1st and 2nd urn, 4 case scenarios may happen:
- Red ball is drawn from the 1st urn with a probability of 9/10, red ball is drawn from the 2st urn with a probability of 1/6. The probability of this case to happen is (9/10)*(1/6) = 9/60 = 3/20 or 0.15. The probability that a ball drawn randomly from the third urn is blue given this scenario is (1 blue + 5 blue)/(8 red + 1 blue + 5 blue) = 6/14 = 3/7.
- Red ball is drawn from the 1st urn with a probability of 9/10, blue ball is drawn from the 2nd urn with a probability of 5/6. The probability of this event to happen is (9/10)*(5/6) = 45/60 = 3/4 or 0.75. The probability that a ball drawn randomly from the third urn is blue given this scenario is (1 blue + 4 blue)/(8 red + 1 blue + 1 red + 4 blue) = 5/14
- Blue ball is drawn from the 1st urn with a probability of 1/10, blue ball is drawn from the 2nd urn with a probability of 5/6. The probability of this event to happen is (1/10)*(5/6) = 5/60 = 1/12. The probability that a ball drawn randomly from the third urn is blue given this scenario is (4 blue)/(9 red + 1 red + 4 blue) = 4/14 = 2/7
- Blue ball is drawn from the 1st urn with a probability of 1/10, red ball is drawn from the 2st urn with a probability of 1/6. The probability of this event to happen is (1/10)*(1/6) = 1/60. The probability that a ball drawn randomly from the third urn is blue given this scenario is (5 blue)/(9 red + 5 blue) = 5/14.
Overall, the total probability that a ball drawn randomly from the third urn is blue is the sum of product of each scenario to happen with their respective given probability
P = 0.15(3/7) + 0.75(5/14) + (1/12)*(2/7) + (1/60)*(5/14) = 0.362