<u>Answer:
</u>
The point-slope form of the line that passes through (6,1) and is parallel to a line with a slope of -3 is 3x + y – 19 = 0
<u>Solution:
</u>
The point slope form of the line that passes through the points
and parallel to the line with slope “m” is given as
--- eqn 1
Where “m” is the slope of the line.
are the points that passes through the line.
From question, given that slope “m” = -3
Given that the line passes through the points (6,1).Hence we get 
By substituting the values in eqn 1, we get the point slope form of the line which is parallel to the line having slope -3 can be found out.
y – 1 = -3(x – 6)
y – 1 = -3x +18
On rearranging the terms, we get
3x + y -1 – 18 = 0
3x + y – 19 = 0
Hence the point slope form of given line is 3x + y – 19 = 0
The percent of change is 9%
Answer:
The little lines mean the sides are the same. Like length.
Answer: 54
Step-by-step explanation: Step 1 i checked how many each one has and multiplied it by all of the numbers there were there by using a plus the hours are 54
A. You divide 1 (infront of x) by 12 to get 12. You divide -6 by 12 to get -2 for the y intercept.