Answer:
Step-by-step explanation:
C is the answer
Answer:
![\frac{-13}{15} x-52](https://tex.z-dn.net/?f=%5Cfrac%7B-13%7D%7B15%7D%20x-52)
Step-by-step explanation:
![\frac{-5}{6}x-\frac{7}{30}x+\frac{1}{5}x-52](https://tex.z-dn.net/?f=%5Cfrac%7B-5%7D%7B6%7Dx-%5Cfrac%7B7%7D%7B30%7Dx%2B%5Cfrac%7B1%7D%7B5%7Dx-52)
![=\frac{-5}{6}x+\frac{-7}{30}x+\frac{1}{5}x+-52](https://tex.z-dn.net/?f=%3D%5Cfrac%7B-5%7D%7B6%7Dx%2B%5Cfrac%7B-7%7D%7B30%7Dx%2B%5Cfrac%7B1%7D%7B5%7Dx%2B-52)
Combine Like Terms:
![=\frac{-5}{6}x+\frac{-7}{30}x+\frac{1}{5}x+-52](https://tex.z-dn.net/?f=%3D%5Cfrac%7B-5%7D%7B6%7Dx%2B%5Cfrac%7B-7%7D%7B30%7Dx%2B%5Cfrac%7B1%7D%7B5%7Dx%2B-52)
![=(\frac{-5}{6}x+\frac{-7}{30}x+\frac{1}{5}x)+(-52)](https://tex.z-dn.net/?f=%3D%28%5Cfrac%7B-5%7D%7B6%7Dx%2B%5Cfrac%7B-7%7D%7B30%7Dx%2B%5Cfrac%7B1%7D%7B5%7Dx%29%2B%28-52%29)
![=\frac{-13}{15}x+-52](https://tex.z-dn.net/?f=%3D%5Cfrac%7B-13%7D%7B15%7Dx%2B-52)
Therefore,
will be your final answer.
Answer:
<h2>
![x \geqslant \frac{y + 4}{3}](https://tex.z-dn.net/?f=x%20%5Cgeqslant%20%20%5Cfrac%7By%20%2B%204%7D%7B3%7D%20)
</h2>
Explanation;
Associated line with this equation is:
y=mx+c
when,
X=0
y=-4
so, c=-4
X=1
y=-1
![- 1 = m- 4 \\ - m = - 4 + 1 \\ - m = - 3 \\ m =3 \\](https://tex.z-dn.net/?f=%20-%201%20%3D%20m-%204%20%5C%5C%20%20-%20m%20%3D%20%20-%204%20%2B%201%20%5C%5C%20%20-%20m%20%3D%20%20-%203%20%5C%5C%20m%20%3D3%20%5C%5C%20)
![y = 3x - 4 \\ or \: y + 4 = 3x \\ or \: \frac{y + 4}{3} = x](https://tex.z-dn.net/?f=y%20%3D%203x%20-%204%20%5C%5C%20or%20%5C%3A%20y%20%2B%204%20%3D%203x%20%5C%5C%20or%20%5C%3A%20%20%5Cfrac%7By%20%2B%204%7D%7B3%7D%20%20%3D%20x)
Inequality representated by graph:
![x \geqslant \frac{y + 4}{3}](https://tex.z-dn.net/?f=x%20%5Cgeqslant%20%20%5Cfrac%7By%20%2B%204%7D%7B3%7D%20)
Hope this helps...
Good luck on your assignment...
Answer:
The correct answer is y ≥ 8
Step-by-step explanation:
In order to graph this, we must first solve the equation for y.
193 + y ≥ 201
y ≥ 8
Now that we have the solved version, we can graph on a number line. Draw a closed circle on the point 8 and then draw an arrow to the right to show that it is greater.