I think the answer is b 0.2(20)
Answer:
ITS c
Step-by-step explanation:
trust me bestie
Answer:
picture: the one with the triangle in red on the base (first picture of box)
Equation: a^2 + 11^2 = c^2
Step-by-step explanation:
as we can see for the first one, the equation we see is 20^2 + 8^2 = c^2, so you look for the picture with those numbers on the triangle.
and to find the equation we look at the picture and see that in the triangle the numbers are 11 and a. And we know the equation has to be 11^2 + a^2 = c^2 And see if that equation is there
Answer:
i can what is it that u need help on?
Step-by-step explanation:
Part A: each tricycle has three wheels, so with 48 wheels the number of tricycles was a =48/3=16 tricycles.
t=w/3 (the number of tricycles is the number of wheels divided by 3)
Part B:
The number of seats:
24=b+a (so b=24-a)
The number of seats is the sum of one seat per bicycle and one seat per a tricycle
also, 61=2a+3b (the number of wheels)
So we have:
24=b+a
b=24-a
We can substitute this for b:
61=2a+3(24-a)
and solve:
61=2a+3*24-3a
61=72-a
a=72-61
a=11
There were 11 bicycles!!
and there were 24-11 tricycles, so 13 tricycles.
Part C: each of the bikes has only one front-steering handlebar, so there were a total of 144 vehicles:
a+b+c=144
There were 378 pedals. And the number of pedals is:
2a+2b+4c=378 (the numbers 2,2,4 represent the number of pedals per vehicle)
divide by 2:
a+b+2c=189
Now, we have
a+b+2c=189
and
a+b+c=144
and we can subtract them from each other:
a+b+c-(a+b+2c)=144-189
-c=45
c=45, so there were 45 tandem bicycles!
(this also means that a+b=144-45, that is a+b=99)
now the wheels:
3a+2b+2c=320
Let's substitute c:
3a+2b+90=320
which is
3a+2b=240
We also know that a+b=99, so we can substract this from this equation:
3a+2b+-a-b=240-99
2a+b=141
and again:
2a+b-a-b=141-99
a=42 - there were 42 trycicles!!!
And the bicycles were the rest:
99-42=57 bycicles