1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
puteri [66]
3 years ago
7

What is the answer to this math question

Mathematics
1 answer:
Vilka [71]3 years ago
8 0

(19 {b}^{3}  + 16 {f}^{3} ) \times 2 {b}^{5}  = 38 {b}^{8}  + 32 {b}^{5}  {f}^{3}
You might be interested in
At a school with 100 students, 40 students are taking Arabic, 35 Bulgarian, and 25
Ad libitum [116K]
A no students are taking all 3 languages
B 41 students are taking no language sorry if I’m wrong have a great day
4 0
3 years ago
Which statement is true about Trapezoids ABCD and DEFG.?
kirill [66]
I believe your answer is B, though I am not positive. I am doing the same question right now, so if it is correct I will let you know! 

Hope this helps! 
5 0
3 years ago
Read 2 more answers
Which diagram shows parallel lines cut by a transversal? 2 lines are cut by a transversal. At the intersection of the first line
AlekseyPX

Answer:

c.

Step-by-step explanation:

2 lines are cut by a transversal. At the intersection of the first line with the transversal, the bottom right angle is 130 degrees. At the intersection of the second line with the transversal, the uppercase right angle is 50 degrees.

6 0
3 years ago
Read 2 more answers
When integrating polar coordinates, when should one use the polar differential element, <img src="https://tex.z-dn.net/?f=rdrd%2
vitfil [10]
To answer your first question: Whenever you convert from rectangular to polar coordinates, the differential element will *always* change according to

\mathrm dA=\mathrm dx\,\mathrm dy\implies\mathrm dA=r\,\mathrm dr\,\mathrm d\theta

The key concept here is the "Jacobian determinant". More on that in a moment.

To answer your second question: You probably need to get a grasp of what the Jacobian is before you can tackle a surface integral.

It's a structure that basically captures information about all the possible partial derivatives of a multivariate function. So if \mathbf f(\mathbf x)=(f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n)), then the Jacobian matrix \mathbf J of \mathbf f is defined as

\mathbf J=\begin{bmatrix}\mathbf f_{x_1}&\cdots&\mathbf f_{x_n}\end{bmatrix}=\begin{bmatrix}{f_1}_{x_1}&\cdots&{f_m}_{x_n}\\\vdots&\ddots&\vdots\\{f_m}_{x_1}&\cdots&{f_m}_{x_n}\end{bmatrix}

(it could be useful to remember the order of the entries as having each row make up the gradient of each component f_i)

Think about how you employ change of variables when integrating a univariate function:

\displaystyle\int2xe^{x^2}\,\mathrm dr=\int e^{x^2}\,\mathrm d(x^2)\stackrel{y=x^2}=\int e^y\,\mathrm dy=e^{r^2}+C

Not only do you change the variable itself, but you also have to account for the change in the differential element. We have to express the original variable, x, in terms of a new variable, y=y(x).

In two dimensions, we would like to express two variables, say x,y, each as functions of two new variables; in polar coordinates, we would typically use r,\theta so that x=x(r,\theta),y=y(r,\theta), and

\begin{cases}x(r,\theta)=r\cos\theta\\y(r,\theta)=r\sin\theta\end{cases}

The Jacobian matrix in this scenario is then

\mathbf J=\begin{bmatrix}x_r&y_\theta\\y_r&y_\theta\end{bmatrix}=\begin{bmatrix}\cos\theta&-r\sin\theta\\\sin\theta&r\cos\theta\end{bmatrix}

which by itself doesn't help in integrating a multivariate function, since a matrix isn't scalar. We instead resort to the absolute value of its determinant. We know that the absolute value of the determinant of a square matrix is the n-dimensional volume of the parallelepiped spanned by the matrix's n column vectors.

For the Jacobian, the absolute value of its determinant contains information about how much a set \mathbf f(S)\subset\mathbb R^m - which is the "value" of a set S\subset\mathbb R^n subject to the function \mathbf f - "shrinks" or "expands" in n-dimensional volume.

Here we would have

\left|\det\mathbf J\right|=\left|\det\begin{bmatrix}\cos\theta&-r\sin\theta\\\sin\theta&r\cos\theta\end{bmatrix}\right|=|r|

In polar coordinates, we use the convention that r\ge0 so that |r|=r. To summarize, we have to use the Jacobian to get an appropriate account of what happens to the differential element after changing multiple variables simultaneously (converting from one coordinate system to another). This is why

\mathrm dx\,\mathrm dy=r\,\mathrm dr\,\mathrm d\theta

when integrating some two-dimensional region in the x,y-plane.

Surface integrals are a bit more complicated. The integration region is no longer flat, but we can approximate it by breaking it up into little rectangles that are flat, then use the limiting process and add them all up to get the area of the surface. Since each sub-region is two-dimensional, we need to be able to parameterize the entire region using a set of coordinates.

If we want to find the area of z=f(x,y) over a region \mathcal S - a region described by points (x,y,z) - by expressing it as the identical region \mathcal T defined by points (u,v). This is done with

\mathbf f(x,y,z)=\mathbf f(x(u,v),y(u,v),z(u,v))

with u,v taking on values as needed to cover all of \mathcal S. The Jacobian for this transformation would be

\mathbf J=\begin{bmatrix}x_u&x_v\\y_u&y_v\\z_u&z_v\end{bmatrix}

but since the matrix isn't square, we can't take a determinant. However, recalling that the magnitude of the cross product of two vectors gives the area of the parallelogram spanned by them, we can take the absolute value of the cross product of the columns of this matrix to find out the areas of each sub-region, then add them. You can think of this result as the equivalent of the Jacobian determinant but for surface integrals. Then the area of this surface would be

\displaystyle\iint_{\mathcal S}\mathrm dS=\iint_{\mathcal T}\|\mathbf f_u\times\mathbf f_v\|\,\mathrm du\,\mathrm dv

The takeaway here is that the procedures for computing the volume integral as opposed to the surface integral are similar but *not* identical. Hopefully you found this helpful.
5 0
3 years ago
Which of the following statements justifies why the triangle shown below is
kirill [66]

Answer: B

Step-by-step explanation:

B is basically showing the Pythagorean theorem does not work on the triangle's side lengths.

The pythagorean theorem is supposed to work for all right triangles

6 0
3 years ago
Other questions:
  • Find the area of a square with a side measure of 3x − 6 feet. Question 5 options: 9x2−36x+36 sq. ft. 9x2−6 sq. ft. 9x2+36x+36 sq
    14·1 answer
  • A rectangle is 7 feet long by 2 feet wide. If 2 feet are added to the length of the rectangle, what would be the area, in square
    5·2 answers
  • Solve by factoring: 8p2 - 64p = 0
    9·1 answer
  • The length of the sides of a hexagon are (x-5) degrees, (2x) degrees, (2x) degrees, (2x+7) degrees, (2x) degrees and (2x-1) degr
    7·1 answer
  • HELP ME PLEASE LOVE U &lt;33
    9·1 answer
  • Answer 1-9 please help i will give thanks or brainiest 10 points
    10·1 answer
  • How can x+3=-2x+5 be set up as a system of equations
    5·2 answers
  • Please answer <br> Step by step
    9·1 answer
  • PLEASE HELP (LOTS OF POINTS) you will get reported if u put random things
    11·2 answers
  • about 2/5 of Joys cottage property is covered with trees. About 21 km2 are open fields. In Km2, how much of her property is cove
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!