1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leno4ka [110]
3 years ago
14

Jordan has $11.40 to spend at the used book store. Each book costs $2.85.How many book can Jordan buy

Mathematics
2 answers:
dimulka [17.4K]3 years ago
5 0

Answer:

HE can buy 4 books

Step-by-step explanation:

1 STEP

11.40 - 2.85

= 8.55

2 STEP

8.55 - 2.85

= 5.70

3 STEP

5.70 - 2.85

= 2.85

4 step

2.85 - 2.85

= 0

Westkost [7]3 years ago
3 0

Jordan can only buy 4 books

You might be interested in
Can u help and explain plz
ANEK [815]

Answer:

look close because that is the question

Step-by-step explanation:

3 0
3 years ago
10a3 what is the vocabulary for 10
dangina [55]

Answer:

Coefficient

Step-by-step explanation:

If it is 10a^3 (10 times the variable "a" cubed), then 10 is the coefficient.

3 0
2 years ago
Solve the equation, |2x+1|=3(x+1) step by step. Does this equation have any extraneous solutions? If so, state them below.
GuDViN [60]

Answer:

Step-by-step explanation:1

6 0
2 years ago
Read 2 more answers
The side of a square is 3 and 5/2 inches
Murrr4er [49]
Perimeter=22 inches
Area=121/4 inches
7 0
3 years ago
Find the derivative: y={ (3x+1)cos(2x) } / e^2x​
DochEvi [55]

Answer:

\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring
  • Exponential Rule [Dividing]:                                                                         \displaystyle \frac{b^m}{b^n} = b^{m - n}
  • Exponential Rule [Powering]:                                                                       \displaystyle (b^m)^n = b^{m \cdot n}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule:                                                                                                         \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Quotient Rule:                                                                                                       \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Trig Derivative:                                                                                                       \displaystyle \frac{d}{dx}[cos(u)] = -u'sin(u)

eˣ Derivative:                                                                                                         \displaystyle \frac{d}{dx}[e^u] = u'e^u

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{(3x + 1)cos(2x)}{e^{2x}}

<u>Step 2: Differentiate</u>

  1. [Derivative] Quotient Rule:                                                                           \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - \frac{d}{dx}[e^{2x}](3x + 1)cos(2x)}{(e^{2x})^2}
  2. [Derivative] [Fraction - Numerator] eˣ derivative:                                       \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{(e^{2x})^2}
  3. [Derivative] [Fraction - Denominator] Exponential Rule - Powering:         \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  4. [Derivative] [Fraction - Numerator] Product Rule:                                       \displaystyle y' = \frac{[\frac{d}{dx}[3x + 1]cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  5. [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule:             \displaystyle y' = \frac{[(1 \cdot 3x^{1 - 1})cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  6. [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify:       \displaystyle y' = \frac{[3cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  7. [Derivative] [Fraction - Numerator] [Brackets] Trig derivative:                   \displaystyle y' = \frac{[3cos(2x) -2sin(2x)(3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  8. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{e^{2x}[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)]}{e^{4x}}
  9. [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]:                     \displaystyle y' = \frac{3cos(2x) -2sin(2x)(3x + 1) - 2(3x + 1)cos(2x)}{e^{2x}}
  10. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

Topic: AP Calculus AB/BC

Unit: Derivatives

Book: College Calculus 10e

6 0
3 years ago
Other questions:
  • Is the inverse of a function always a function? explain your answer please
    9·1 answer
  • Which expressions are equivalent to 2(25)?<br> 2(20 + 15)<br> 2(10 + 15)<br> 2(2 + 5)<br> 2(20 + 5)
    7·1 answer
  • Factor completely 3x^2+2x-1
    15·1 answer
  • What is this answer please I need help​
    10·1 answer
  • A locker combination contains four digits. Each digit can be from 0 through 9. What is the probability that a 4-digit combinatio
    6·2 answers
  • What is the value of the slope of a line with the equation: 20-5x?
    5·1 answer
  • There is more than 1 way to name a ray<br><br> True or false
    10·1 answer
  • Two positive integers have a product of 176. One integer is 5 less than the other integer. Which equation can be used to find th
    9·1 answer
  • What is the length of side AB
    6·1 answer
  • Which of these is NOT likely to be found on your credit report? A) current address B) previous employer C) church membership D)
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!