The Hypotenuse is 10 Meters.
If the discriminant is a positive number, there will be 2 possible solutions. If you replace the entire section of b²-4ac with 16, you will see that the equation becomes; (-b+-√16)/2a --> leading to an answer with the + and another with the -.
If the discriminant is 0, there will be 1 possible solution, (again replace this into the discriminant value) (-b)/2a ---> this formula is used to also find the x coordinates of a vertex, fyi.
If the discriminant is a negative number, there will be no solution (since squareroot of a negative number is not possible)
Hope I helped :)
Y=x^2-5
y=2x-5
y+5=2x
x=(y+5)/2
y=((y+5)/2)^2-5
y=(y^2+10y+25)/4-5
4y=y^2+10y+25-20
0=y^2+6y+5
0=(y+5)(y+1)
y= -5 or -1
y=2x-5 (y= -5 doesn't work for this one so use -1)
-1=2x-5
2x=4
x=2
Using these answers, you can choose answer D with reasonable certainty.
Check the picture below.
![\stackrel{\textit{\Large Areas}}{\stackrel{triangle}{\cfrac{1}{2}(6)(6)}~~ + ~~\stackrel{semi-circle}{\cfrac{1}{2}\pi (3)^2}}\implies \boxed{18+4.5\pi} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{pythagorean~theorem}{CA^2 = AB^2 + BC^2\implies} CA=\sqrt{AB^2 + BC^2} \\\\\\ CA=\sqrt{6^2+6^2}\implies CA=\sqrt{6^2(1+1)}\implies CA=6\sqrt{2} \\\\\\ \stackrel{\textit{\Large Perimeters}}{\stackrel{triangle}{(6+6\sqrt{2})}~~ + ~~\stackrel{semi-circle}{\cfrac{1}{2}2\pi (3)}}\implies \boxed{6+6\sqrt{2}+3\pi}](https://tex.z-dn.net/?f=%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Areas%7D%7D%7B%5Cstackrel%7Btriangle%7D%7B%5Ccfrac%7B1%7D%7B2%7D%286%29%286%29%7D~~%20%2B%20~~%5Cstackrel%7Bsemi-circle%7D%7B%5Ccfrac%7B1%7D%7B2%7D%5Cpi%20%283%29%5E2%7D%7D%5Cimplies%20%5Cboxed%7B18%2B4.5%5Cpi%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7Bpythagorean~theorem%7D%7BCA%5E2%20%3D%20AB%5E2%20%2B%20BC%5E2%5Cimplies%7D%20CA%3D%5Csqrt%7BAB%5E2%20%2B%20BC%5E2%7D%20%5C%5C%5C%5C%5C%5C%20CA%3D%5Csqrt%7B6%5E2%2B6%5E2%7D%5Cimplies%20CA%3D%5Csqrt%7B6%5E2%281%2B1%29%7D%5Cimplies%20CA%3D6%5Csqrt%7B2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Perimeters%7D%7D%7B%5Cstackrel%7Btriangle%7D%7B%286%2B6%5Csqrt%7B2%7D%29%7D~~%20%2B%20~~%5Cstackrel%7Bsemi-circle%7D%7B%5Ccfrac%7B1%7D%7B2%7D2%5Cpi%20%283%29%7D%7D%5Cimplies%20%5Cboxed%7B6%2B6%5Csqrt%7B2%7D%2B3%5Cpi%7D)
notice that for the perimeter we didn't include the segment BC, because the perimeter of a figure is simply the outer borders.