Answer:
![2a^3b^2\sqrt[3]{3a}](https://tex.z-dn.net/?f=2a%5E3b%5E2%5Csqrt%5B3%5D%7B3a%7D)
Step-by-step explanation:
Use the following rules for exponents:
![a^m*a^n=a^{m+n}\\\\\sqrt[3]{x^3}=x](https://tex.z-dn.net/?f=a%5Em%2Aa%5En%3Da%5E%7Bm%2Bn%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7Bx%5E3%7D%3Dx)
Simplify 24. Find two factors of 24, one of which should be a perfect cube:

Insert:
![\sqrt[3]{2^3*3a^{10}b^6}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2%5E3%2A3a%5E%7B10%7Db%5E6%7D)
Now split the exponents. Split 10 into as many 3's as possible:

Insert as exponents:
![\sqrt[3]{2^3*3*a^3*a^3*a^3*a^1*b^6}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2%5E3%2A3%2Aa%5E3%2Aa%5E3%2Aa%5E3%2Aa%5E1%2Ab%5E6%7D)
Split 6 into as many 3's as possible:

Insert as exponents:
![\sqrt[3]{2^3*3*a^3*a^3*a^3*a^1*b^3*b^3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2%5E3%2A3%2Aa%5E3%2Aa%5E3%2Aa%5E3%2Aa%5E1%2Ab%5E3%2Ab%5E3%7D)
Now simplify. Any terms with an exponent of 3 will be moved out of the radical (rule #2):
![2\sqrt[3]{3*a^3*a^3*a^3*a^1*b^3*b^3}\\\\\\2*a*a*a\sqrt[3]{3*a^1*b^3*b^3}\\\\\\2*a*a*a*b*b\sqrt[3]{3*a^1}](https://tex.z-dn.net/?f=2%5Csqrt%5B3%5D%7B3%2Aa%5E3%2Aa%5E3%2Aa%5E3%2Aa%5E1%2Ab%5E3%2Ab%5E3%7D%5C%5C%5C%5C%5C%5C2%2Aa%2Aa%2Aa%5Csqrt%5B3%5D%7B3%2Aa%5E1%2Ab%5E3%2Ab%5E3%7D%5C%5C%5C%5C%5C%5C2%2Aa%2Aa%2Aa%2Ab%2Ab%5Csqrt%5B3%5D%7B3%2Aa%5E1%7D)
Simplify:
![2a^3b^2\sqrt[3]{3a}](https://tex.z-dn.net/?f=2a%5E3b%5E2%5Csqrt%5B3%5D%7B3a%7D)
:Done
It depends on the side lengths, but the sum of all the angles is 360°
Answer:
f(4) = 49
f(-3) = -35
Step-by-step explanation:
f(4) = 12(4) + 1 = 48 + 1 = 49
f(-3) = 12(-3) + 1 = -36 + 1 = -35
Answer:
Step-by-step explanation:
Let the initial price be x
<u>Then the reduced price is </u>
<u>If 5 mugs cost $28.20, we have equation:</u>
- (x - 1.75)*5 = 28.20
- x - 1.75 = 28.20/5
- x - 1.75 = 5.64
- x = 1.75 + 5.64
- x = 7.39
Initial price for 1 mug was $7.39
Answer: y = x/2 + 3
Step-by-step explanation:
The equation of a straight line can be represented in the slope-intercept form, y = mx + c
Where c = intercept
Slope, m = change in value of y on the vertical axis / change in value of x on the horizontal axis
change in the value of y = y2 - y1
Change in value of x = x2 -x1
y2 = final value of y
y 1 = initial value of y
x2 = final value of x
x1 = initial value of x
Looking at the graph,
y2 = 6
y1 = 4
x2 = 6
x1 = 2
Slope,m = (6 - 4)/(6 - 2) = 2/4 = 1/2
To determine the intercept, we would substitute x = 2, y = 4 and m= 1/2 into y = mx + c. It becomes
4 = 1/2 × 2 + c
4 = 1 + c
c = 4 - 1
c = 3
The equation becomes
y = x/2 + 3