<span>the product of one term of a multiplicand and one term of its multiplier.</span>
The closest option to the actual answer is a.
1 5/18 is the actual answer.
If you make both the denominators the same, then you can actually add the fractions together.
To make both of the denominators the same, you need to multiply 5/6 by 9 and 4/9 by 6, which would result in 45/54 + 24/54= 69/54 = 23/18. If we convert it to a mixed fraction, it would result into 1 5/18.
A function m(t)= m₀e^(-rt) that models the mass remaining after t years is; m(t) = 27e^(-0.00043t)
The amount of sample that will remain after 4000 years is; 4.8357 mg
The number of years that it will take for only 17 mg of the sample to remain is; 1076 years
<h3>How to solve exponential decay function?</h3>
A) Using the model for radioactive decay;
m(t)= m₀e^(-rt)
where;
m₀ is initial mass
r is rate of growth
t is time
Thus, we are given;
m₀ = 27 mg
r = (In 2)/1600 = -0.00043 which shows a decrease by 0.00043
and so we have;
m(t) = 27e^(-0.00043t)
c) The amount that will remain after 4000 years is;
m(4000) = 27e^(-0.00043 * 4000)
m(4000) = 27 * 0.1791
m(4000) = 4.8357 mg
d) For 17 mg to remain;
17 = 27e^(-0.00043 * t)
17/27 = e^(-0.00043 * t)
In(17/27) = -0.00043 * t
-0.4626/-0.00043 = t
t = 1076 years
Read more about Exponential decay function at; brainly.com/question/27822382
#SPJ1