Answer:
D
Step-by-step explanation:
From any point (x, y) on the parabola the focus and directrix are equidistant
Using the distance formula
= | y + 1 |
Squaring both sides
(x + 5)² + (y - 5)² = (y + 1)^2 , that is
(y + 1)² = (x + 5)² + (y - 5)² ← subtract (y - 5)² from both sides
(y + 1)² - (y - 5)² = (x + 5)² ← expand left side and simplify
y² + 2y + 1 - y² + 10y - 25 = (x + 5)²
12y - 24 = (x + 5)² ← factor left side
12(y - 2) = (x + 5)² ← divide both sides by 12
y - 2 =
(x + 5)² ← add 2 to both sides
y =
(x + 5)² + 2
or
f(x) =
(x + 5)² + 2 → D
Answer:
6y+2x
Step-by-step explanation:
A parabola can be drawn given a focus of (-4, 4) and a directrix of y = –6. Write
You can find the remainder right away by simply plugging in

. The polynomial remainder theorem guarantees that the value of

is the remainder upon dividing

by

, but I digress...
Synthetic division yields
3 | 2 -11 18 -15
. | 6 -15 9
- - - - - - - - - - - - - - - - -
. | 2 -5 3 -6
which translates to

(and note that

, as expected)
First you do 3.5z-2.7z= .8z then you divide .8 with -6, which gives you -7.5 so z= -7.5