Answer:
145 degrees
Explanation:
A straight line is 180 degrees so minus 180 by 35 to get 145 degrees.
Hello,
r=5(1+cos t)
r'=5(-sin t)
r²+r'²= 25[(1+cos t)²+(-sin t)²]=50(1-cos t)=50 sin² (t/2)
Between 0 and π, sin x>0 ==>|sin x|=sin x
![l= 2*5* \int\limits^{\pi}_0{sin( \frac{t}{2} )} \, dt= 5[-cos (t/2)]_0^{\pi}\\\\ =5(0+1)=5](https://tex.z-dn.net/?f=l%3D%202%2A5%2A%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%7Bsin%28%20%5Cfrac%7Bt%7D%7B2%7D%20%29%7D%20%5C%2C%20dt%3D%205%5B-cos%20%28t%2F2%29%5D_0%5E%7B%5Cpi%7D%5C%5C%5C%5C%0A%3D5%280%2B1%29%3D5)
Here is the method but i may have make some mistakes.
I Think The answer is a I hope it helps My friend Message Me if I’m wrong and I’ll change My answer and fix it for you
Answer:
Ix - 950°C I ≤ 250°C
Step-by-step explanation:
We are told that the temperature may vary from 700 degrees Celsius to 1200 degrees Celsius.
And that this temperature is x.
This means that the minimum value of x is 700°C while maximum of x is 1200 °C
Let's find the average of the two temperature limits given:
x_avg = (700 + 1200)/2 =
x_avg = 1900/2
x_avg = 950 °C
Now let's find the distance between the average and either maximum or minimum.
d_avg = (1200 - 700)/2
d_avg = 500/2
d_avg = 250°C.
Now absolute value equation will be in the form of;
Ix - x_avgI ≤ d_avg
Thus;
Ix - 950°C I ≤ 250°C