Answer:
Step-by-step explanation:
We would set up the hypothesis test. This is a test of a single population mean since we are dealing with mean
For the null hypothesis,
µ ≥ 50000
For the alternative hypothesis,
µ < 50000
Since the population standard deviation is given, z score would be determined from the normal distribution table. The formula is
z = (x - µ)/(σ/√n)
Where
x = lifetime of the tyres
µ = mean lifetime
σ = standard deviation
n = number of samples
From the information given,
µ = 50000 miles
x = 45800 miles
σ = 8000
n = 29
z = (50000 - 45800)/(8000/√29) = - 2.83
Looking at the normal distribution table, the probability corresponding to the z score is 0.9977
Since alpha, 0.05 < than the p value, 0.9977, then we would accept the null hypothesis. Therefore, At a 5% level of significance, the data is not highly consistent with the claim.
Answer:
Length = 20 inches
Area = 300 inches
Step-by-step explanation:
<em><u>TO FIND THE LENGTH</u></em>
Pythagorean Theorem: 15 squared + x squared = 25 squared
= 225 + x squared = 625
- 225 - 225
= x squared = 400
find square root
= x = 20 inches
x = 20 inches
Length = 20 inches
<u><em>TO FIND THE AREA</em></u>
length x width
length = 20 inches
width = 15 inches
20 x 15 = 300
Area = 300 inches
Answer:
C) 3x - 4y = 7
Step-by-step explanation:
The midpoint of AB is
M( (-2 + 4)/2, (-5 + 3)/2 ) = M(1, -1)
Line AB has slope:
(3 - (-5))/(-2 - 4) = 8/(-6) = -4/3
Slopes of perpendicular lines are negative reciprocals.
A perpendicular to line AB has slope 3/4.
The perpendicular to line AB that passes through the midpoint of segment AB is the line we want.






Hi there!


We can calculate dy/dx using implicit differentiation:
xy + y² = 6
Differentiate both sides. Remember to use the Product Rule for the "xy" term:
(1)y + x(dy/dx) + 2y(dy/dx) = 0
Move y to the opposite side:
x(dy/dx) + 2y(dy/dx) = -y
Factor out dy/dx:
dy/dx(x + 2y) = -y
Divide both sides by x + 2y:
dy/dx = -y/x + 2y
We need both x and y to find dy/dx, so plug in the given value of x into the original equation:
-1(y) + y² = 6
-y + y² = 6
y² - y - 6 = 0
(y - 3)(y + 2) = 0
Thus, y = -2 and 3.
We can calculate dy/dx at each point:
At y = -2: dy/dx = -(-2) / -1+ 2(-2) = -2/5.
At y = 3: dy/dx = -(3) / -1 + 2(3) = -3/5.