Answer:
64 feet
Step-by-step explanation:
To find the height of the kite we use sin trigonometric ratio.
Let the height of the kite from the ground be x feet.

Umm i not that sure but i think its a
These calculations are based on the drawing of the file enclosed.
There are three right triangles.
From the big right triangle:
a^2 + b^2 = 25^2
From the small right triangle on the left side:
(25-x)^2 + 10^2 = a^2
From the small right triangle on the right side
x^2 +10^2 = b^2
=> (25-x)^2 + 10^2 + x^2 + 10^2 = a^2 + b^2
=> (25-x)^2 + 10^2 + x^2 + 10^2 = 25^2
=> 25^2 - 50x + x^2 + 10^2 + 10^2 = 25^2
=> x^2 -50x + 100 =0
Use the quadratic formular to find the roots:
x = 2.1 and x = 47.9
Distance from back: 25 - 2.1 = 22.9 ft
Answer: 22.9 ft
Answer:
r = 5 cm
V = 523.599 cm3
A = 314.159 cm2
C = 31.4159 cm