Answer:
n = 66.564
Step-by-step explanation:
- Because the population is unknown, we will apply the following formula to find the sample size:

Where:
z = confidence level score.
S = standard deviation.
E = error range.
2. We will find each of these three data and replace them in the formula.
"z" theoretically is a value that measures how many standard deviations an element has to the mean. For each confidence level there is an associated z value. In the question, this level is 99%, which is equivalent to a z value of 2.58. To find this figure it is not necessary to follow any mathematical procedure, it is enough to make use of a z-score table, which shows the values for any confidence interval.
The standard deviation is already provided by the question, it is S = 100.
Finally, "E" is the acceptable limit of sampling error. In the example, we can find this data. Let us note that in the end it says that the director wishes to estimate the mean number of admissions to within 1 admission, this means that she is willing to tolerate a miscalculation of just 1 admission.
Once this data is identified, we replace in the formula:

3. The corresponding mathematical operations are developed:


n= 66.564
Answer:
In common scientific notation, any nonzero quantity can be expressed in two parts: sufficient whose absolute value is greater than or equal to 1 but less than 10, and a power of 10 by which the coefficient is multiplied. In some writings, the coefficients are closer to zero by one order of magnitude. In this scheme, any nonzero quantity is expressed in two parts: a coefficient whose absolute value is greater than or equal to 0.1 but less than 1, and a power of 10 by which the coefficient is multiplied. The quantity zero is denoted as 0 unless precision is demanded, in which case the requisite number of significant digits are written out
Answer:
38units²
Step-by-step explanation:
10*3=30 + 4*2=8
got 4 cuz 6+x=10 then x=4
got 2 cuz 5-3=x so x=2
Answer:
T'(2, - 5 )
Step-by-step explanation:
Under a rotation about the origin of 180°
a point (x, y ) → (- x, - y ), thus
T(- 2, 5 ) → T'(2, - 5 )