No they say "Watch out it's the fuzz"
Answer:
The crumpled paper hits the ground first due to air resistance. The crumpled paper has less surface area than the flat paper, therefore the crumpled paper hits first.
I hope this helped. If you could mark brainliest that would be greatly appreciated.
Answer: this would be D.) What does a turntable built into a track look like
Explanation:
The x-component of a vector are < 106.6, 43.07 >
Depending on the angle we are provided, the x-component of a vector can either be cos or sin. Cos always corresponds to the right triangle's side that contacts the specified angle.
If a vector v with magnitude ||v|| makes an angle θ with the positive x-axis then,
v = ||v|| cos θi + ||v|| sin θj
= < ||v|| cos θ , ||v|| sin θ >
Magnitude p = 115 km
Angle = 22°
p = ||p|| < cos θ, sin θ >
p = 115 < cos 22°, sin 22° >
p = 115 < 0.927, 0.3746 >
p = < 106.6, 43.07 >
Therefore, the x-component of a vector are < 106.6, 43.07 >
Learn more about vectors here:
brainly.com/question/8043832
#SPJ1
Answer:
0 < r < r_exterior B_total =
r > r_exterior B_total = 0
Explanation:
The magnetic field created by the wire can be found using Ampere's law
∫ B. ds = μ₀ I
bold indicates vectors and the current is inside the selected path
outside the inner cable
B₁ (2π r) = μ₀ I
B₁ =
the direction of this field is found by placing the thumb in the direction of the current and the other fingers closed the direction of the magnetic field which is circular in this case.
For the outer shell
for the case r> r_exterior
B₂ = \frac{\mu_o I}{2\pi r}
This current is in the opposite direction to the current in wire 1, so the magnetic field has a rotation in the opposite direction
for the case r <r_exterior
in this case all the current is outside the point of interest, consequently not as there is no internal current, the field produced is zero
B₂ = 0
Now we can find the field created by each part
0 < r < r_exterior
B_total = B₁
B_total =
r > r_exterior
B_total = B₁ -B₂
B_total = 0