Using the Michaelis-Menten equation competitive inhibition, the Inhibition constant, Ki of the inhibitor is 53.4 μM.
<h3>What is the Ki for the inhibitor?</h3>
The Ki of an inhibitor is known as the inhibition constant.
The inhibition is a competitive inhibition as the Vmax is unchanged but Km changes.
Using the Michaelis-Menten equation for inhibition:
Making Ki subject of the formula:
where:
- Kma is the apparent Km due to inhibitor
- Km is the Km of the enzyme-catalyzed reaction
- [I] is the concentration of the inhibitor
Solving for Ki:
where
[I] = 26.7 μM
Km = 1.0
Kma = (150% × 1 ) + 1 = 2.5
Ki = 26.7 μM/{(2.5/1) - 1)
Ki = 53.4 μM
Therefore, the Inhibition constant, Ki of the inhibitor is 53.4 μM.
Learn more about enzyme inhibition at: brainly.com/question/13618533
The formation of ammonia gas involves reacting hydrogen gas and nitrogen gas in a mole ratio of 3 to 1. as shown below:
<h3>What is the equation of the formation of ammonia?</h3>
Ammonia gas is formed from the reaction between nitrogen gas and hydrogen gas.
Three moles of hydrogen gas will react with 1 mole of nitrogen gas to form 2 moles of ammonia gas.
The equation of the reaction is given below as:
Therefore, the formation of ammonia gas involves reacting hydrogen gas and nitrogen gas in a mole ratio of 3 to 1.
Learn more about ammonia gas at: brainly.com/question/7982628
Electrons can gain the energy it needs by absorbing light. If the electron jumps from the second energy level down to the first energy level, it must give off some energy by emitting light. The atom absorbs or emits light in discrete packets called photons, and each photon has a definite energy.
A coordination number can be determined by the usage of an atom towards a molecule from seeing how many numbers of atoms would have to be combined together in an atom.
Answer:
cutting, bending, dissolving, freezing, and boiling
Explanation:
A physical change is a change in one or more physical properties of matter without any change in chemical properties. In other words, matter doesn't change into a different substance in a physical change. Examples of physical change include but are not limited to, from solid to liquid or from liquid to gas are also physical changes.