Answer:

Step-by-step explanation:
Note: For this problem we use the calculator on degrees
For this case we need to remember this identity :
For this case if we apply for our desired formula we got this:
![a cos (x-c) = a [cos (c) cos (x) + sin (c) sin (x)]](https://tex.z-dn.net/?f=%20a%20cos%20%28x-c%29%20%3D%20a%20%5Bcos%20%28c%29%20cos%20%28x%29%20%2B%20sin%20%28c%29%20sin%20%28x%29%5D)
And we want this equal to
so we can set up the following equality:
(1)
If we apply direct comparison between the factors on equation (1) we see this:
(2)
(3)
If we solve a from equation (2) we got:
(4)
If we replace equation (4) into equation (3) we got:


If we apply inverse tangent on both sides we got:

So then the value of c= 36.870 degrees. And since w ehave the value of c we can find the value for a and we got:
![[tex] a = \frac{8}{cos (36.870)}=10](https://tex.z-dn.net/?f=%20%5Btex%5D%20a%20%3D%20%5Cfrac%7B8%7D%7Bcos%20%2836.870%29%7D%3D10)
And then our expression in the form
is:

And we can check that:
![h(x)= 10 cos (36.870) [cos (x)] + 10 sin (36.870) [sin(x)]= 8 cos (x) + 6 sin (x)](https://tex.z-dn.net/?f=%20h%28x%29%3D%2010%20cos%20%2836.870%29%20%5Bcos%20%28x%29%5D%20%2B%2010%20sin%20%2836.870%29%20%5Bsin%28x%29%5D%3D%208%20cos%20%28x%29%20%2B%206%20sin%20%28x%29)