We are asked to determine the limits of the function cos(2x) / x as x approaches to zero. In this case, we first substitute zero to x resulting to 1/0. A number, any number divided by zero is always equal to infinity, Hence there are no limits to this function.
<h3>Answer to Question 1:</h3>
AB= 24cm
BC = 7cm
<B = 90°
AC = ?
<h3>Using Pythagoras theorem :-</h3>
AC^2 = AB^2 + BC ^ 2
AC^2 = 24^2 + 7^2
AC^2 = 576 + 49
AC^2 = √625
AC = 25
<h3>Answer to Question 2 :-</h3>
sin A = 3/4
CosA = ?
TanA = ?
<h3>SinA = Opp. side/Hypotenuse</h3><h3> = 3/4</h3>
(Construct a triangle right angled at B with one side BC of 3cm and hypotenuse AC of 4cm.)
<h3>Using Pythagoras theorem :-</h3>
AC^2 = AB^2 + BC ^ 2
4² = AB² + 3²
16 = AB + 9
AB = √7cm
<h3>CosA = Adjacent side/Hypotenuse</h3>
= AB/AC
= √7/4
<h3>TanA= Opp. side/Adjacent side</h3>
=BC/AB
= 3/√7
Answer:
≈ 78.55 cm
Step-by-step explanation:
Using the ratio of arc (AB) to circumference (C) is equal to the ratio of angle subtended at centre by arc AB to 360°, that is
=
, that is
=
( cross- multiply )
110C = 8640 ( divide both sides by 110 )
C =
≈ 78.55 cm ( to 2 dec. places )
Answer:
f(2) = - 1 and f(4) = 3
Step-by-step explanation:
To evaluate f(2), substitute x = 2 into f(x), that is
f(2) = 2(2) - 5 = 4 - 5 = - 1
To evaluate f(4), substitute x = 4 into f(x)
f(4) = - 3(4) + 15 = - 12 + 15 = 3
Answer:
(-4/3), 0.4, 0.8, √2, √11
Step-by-step explanation:
√11=3.316624790355399849114932736670686683927088545589353597058
0.4
(-4/3) = -1.33333333333333333333333333333333333333333333333333333333
0.8
√2=1.414213562373095048801688724209698078569671875376948073176
Thus :
(-4/3)
0.4
0.8
√2
√11