Answer:
-4
Step-by-step explanation:
(-2)^2=4 because a negative number squared is always positive
-(2)^2=-4
Answer:
y = 2*x^2 - 2*x - 24
Step-by-step explanation:
If we have a quadratic function with roots a and b, we can write the equation for that function as:
y = f(x) = A*(x - a)*(x - b)
Where A is the leading coefficient.
In this case, we know that the roots are: 4 and -3
Then the function will be something like:
f(x) = A*(x - 4)*(x - (-3) )
f(x) = A*(x - 4)*(x + 3)
Now we need to determine the value of A.
We also know that the graph of the function passes through the point (3, -12)
This means that:
f(3) = -12
Then:
-12 = A*(3 - 4)*(3 + 3)
-12 = A*(-1)*(6)
-12 = A*(-6)
-12/-6 = A
2 = A
Then the equation is:
y = f(x) = 2*(x - 4)*(x + 3)
Now we need to write this in standard form, so we just need to expand the equation:
y = f(x) = 2*(x^2 + x*3 - x*4 - 4*3)
y = f(x) = 2*(x^2 - x - 12)
y = f(x) = 2*x^2 - 2*x - 24
Then the relation is:
y = 2*x^2 - 2*x - 24
Answer:
It sucks
Step-by-step explanation:
Answers:
A ' = (-2, -3)
B ' = (0, -3)
C ' = (-1, 1)
=======================================================
Explanation:
To apply an x axis reflection, we simply change the sign of the y coordinate from positive to negative, or vice versa. The x coordinate stays as is.
Algebraically, the reflection rule used can be written as 
Applying this rule to the three given points will mean....
- Point A = (-2, 3) becomes A ' = (-2, -3)
- Point B = (0, 3) becomes B ' = (0, -3)
- Point C = (-1, -1) becomes C ' = (-1, 1)
The diagram is provided below.
Side note: Any points on the x axis will stay where they are. That isn't the case here, but its for any future problem where it may come up. This only applies to x axis reflections.