1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bingel [31]
3 years ago
12

Find the mean median mode and range 2,5,9,4,3

Mathematics
2 answers:
snow_lady [41]3 years ago
3 0
Mean: 4.6 (basically the average
Median: 4 (the number in the middle
Mode: there isn’t one (it’s the number repeated the most)
Range: 7 (largest and smallest number subtracted
timurjin [86]3 years ago
3 0

list the following data set from least to greatest:

2, 3, 4, 5, 9

range: highest value - lowest value = answer

Range: 9 - 2 = 7

Mode: there is no mode in this data set, (mode represents how many times a number is repeated)

(for example: 2, 5, 5, 6, 14, the following mode in this data set is 5)

Mode: none

mean:

(just add up all the numbers and divide it by 5 since there are 5 numbers in the following data set, or the listed numbers.)

2 + 5 + 9 + 4 + 3 = 23/5 = 4.6

mean: 4.6

range: 7

Mode: None, there are no mode in the data set or listed numbers.

You might be interested in
Factor completely <br> 4(x+1)^2/3 + 12(x+1)^-1/3
wolverine [178]
\bf a^{\frac{{ n}}{{ m}}} \implies  \sqrt[{ m}]{a^{ n}} \qquad \qquad&#10;\sqrt[{ m}]{a^{ n}}\implies a^{\frac{{ n}}{{ m}}}\\\\&#10;\left.\qquad \qquad \right.\textit{negative exponents}\\\\&#10;a^{-{ n}} \implies \cfrac{1}{a^{ n}}&#10;\qquad \qquad&#10;\cfrac{1}{a^{ n}}\implies a^{-{ n}}&#10;\qquad \qquad &#10;a^{{{  n}}}\implies \cfrac{1}{a^{-{{  n}}}}&#10;\\\\&#10;-------------------------------\\\\&#10;%4(x+1)^2/3 + 12(x+1)^-1/3&#10;4(x+1)^{\frac{2}{3}}+12(x+1)^{-\frac{1}{3}}\implies 4(x+1)^{\frac{2}{3}}+12\cfrac{1}{(x+1)^{\frac{1}{3}}}&#10;\\\\\\

\bf 4(x+1)^{\frac{2}{3}}+\cfrac{12}{(x+1)^{\frac{1}{3}}}\impliedby \textit{so, our LCD is }(x+1)^{\frac{1}{3}}&#10;\\\\\\&#10;\cfrac{4(x+1)^{\frac{2}{3}}\cdot (x+1)^{\frac{1}{3}}+12}{(x+1)^{\frac{1}{3}}}\implies \cfrac{4(x+1)^{\frac{2}{3}+\frac{1}{3}}+12}{(x+1)^{\frac{1}{3}}}&#10;\\\\\\&#10;\cfrac{4(x+1)^{\frac{3}{3}}+12}{(x+1)^{\frac{1}{3}}}\implies \cfrac{4(x+1)+12}{(x+1)^{\frac{1}{3}}}\implies \cfrac{4x+4+12}{(x+1)^{\frac{1}{3}}}&#10;\\\\\\&#10;\cfrac{4x+16}{(x+1)^{\frac{1}{3}}}\implies \cfrac{4(x+4)}{\sqrt[3]{x+1}}
3 0
3 years ago
Read 2 more answers
1-(1.00375) exponent-12(30)
victus00 [196]

Answer:

360

Step-by-step explanation:

7 0
3 years ago
Which number is relatively prime to 63?<br> A. 114<br> B. 99<br> C. 87<br> D. 25
ElenaW [278]

Answer:

The answer is 114 which is the first answer which is A

Step-by-step explanation:

The rest 99, 87, and 25 just dont

Hope this helps you

7 1
3 years ago
Can anybody answer this?
kirza4 [7]
Should be 180 my g, I’m pretty sure
7 0
3 years ago
Read 2 more answers
1. Approximate the given quantity using a Taylor polynomial with n3.
Jet001 [13]

Answer:

See the explanation for the answer.

Step-by-step explanation:

Given function:

f(x) = x^{1/4}

The n-th order Taylor polynomial for function f with its center at a is:

p_{n}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(n)}a}{n!} (x-a)^{n}

As n = 3  So,

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{3!} (x-a)^{3}

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{6} (x-a)^{3}

p_{3}(x) = a^{1/4} + \frac{1}{4a^{ 3/4} }  (x-a)+ (\frac{1}{2})(-\frac{3}{16a^{7/4} } ) (x-a)^{2} +  (\frac{1}{6})(\frac{21}{64a^{11/4} } ) (x-a)^{3}

p_{3}(x) = 81^{1/4} + \frac{1}{4(81)^{ 3/4} }  (x-81)+ (\frac{1}{2})(-\frac{3}{16(81)^{7/4} } ) (x-81)^{2} +  (\frac{1}{6})(\frac{21}{64(81)^{11/4} } ) (x-81)^{3}

p_{3} (x) = 3 + 0.0092592593 (x - 81) + 1/2 ( - 0.000085733882) (x - 81)² + 1/6  

                                                                                  (0.0000018522752) (x-81)³

p_{3} (x)  =  0.0092592593 x - 0.000042866941 (x - 81)² + 0.00000030871254

                                                                                                       (x-81)³ + 2.25

Hence approximation at given quantity i.e.

x = 94

Putting x = 94

p_{3} (94)  =  0.0092592593 (94) - 0.000042866941 (94 - 81)² +          

                                                                 0.00000030871254 (94-81)³ + 2.25

         = 0.87037 03742 - 0.000042866941 (13)² + 0.00000030871254(13)³ +    

                                                                                                                       2.25

         = 0.87037 03742 - 0.000042866941 (169) +  

                                                                      0.00000030871254(2197) + 2.25

         = 0.87037 03742 - 0.007244513029 + 0.0006782414503 + 2.25

p_{3} (94)  = 3.113804102621

Compute the absolute error in the approximation assuming the exact value is given by a calculator.

Compute \sqrt[4]{94} as 94^{1/4} using calculator

Exact value:

E_{a}(94) = 3.113737258478

Compute absolute error:

Err = | 3.113804102621 - 3.113737258478 |

Err (94)  = 0.000066844143

If you round off the values then you get error as:

|3.11380 - 3.113737| = 0.000063

Err (94)  = 0.000063

If you round off the values up to 4 decimal places then you get error as:

|3.1138 - 3.1137| = 0.0001

Err (94)  = 0.0001

4 0
3 years ago
Other questions:
  • Find x value for the point that splits segment co in halt point c is located at 4) and point D is located at (3,7)
    10·1 answer
  • Can someone answer these questions please
    7·1 answer
  • Why is not reasonable to say that 4.23 is less than 4.135
    8·1 answer
  • Given that Ray E B bisects ∠CEA, which statements must be true? Select three options.
    13·1 answer
  • The graph below represents the solution set of which inequality?
    12·1 answer
  • What is 13/14 - 1/4 and put it in simplest
    10·2 answers
  • Find the slope from the table below. ​
    10·2 answers
  • What is the formula for a triangle prism
    14·1 answer
  • Anyone want my username?
    6·1 answer
  • What is the name of this object?<br><br> angle<br> straight line<br> line segment
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!