Have you tried using the website slader? It has answers for all your questions just search up slader on google then search your book on the website.
1042 / 45
=23.15
You should be able to do that with a calculator though.
Answer:
He needs 785 more minutes
Step-by-step explanation:
Answer:
- g(2.95) ≈ -1.8; g(3.05) ≈ -0.2
- A) tangents are increasing in slope, so the tangent is below the curve, and estimates are too small.
Step-by-step explanation:
(a) The linear approximation of g(x) at x=b will be ...
g(x) ≈ g'(b)(x -b) +g(b)
Using the given relations, this is ...
g'(3) = 3² +7 = 16
g(x) ≈ 16(x -3) -1
Then the points of interest are ...
g(2.95) ≈ 16(2.95 -3) -1 = -1.8
g(3.05) ≈ 16(3.05 -3) -1 = -0.2
__
(b) At x=3, the slope of the curve is increasing, so the tangent lies below the curve. The estimates are too small. (Matches description A.)
9514 1404 393
Answer:
-3 ≤ x ≤ 19/3
Step-by-step explanation:
This inequality can be resolved to a compound inequality:
-7 ≤ (3x -5)/2 ≤ 7
Multiply all parts by 2.
-14 ≤ 3x -5 ≤ 14
Add 5 to all parts.
-9 ≤ 3x ≤ 19
Divide all parts by 3.
-3 ≤ x ≤ 19/3
_____
<em>Additional comment</em>
If you subtract 7 from both sides of the given inequality, it becomes ...
|(3x -5)/2| -7 ≤ 0
Then you're looking for the values of x that bound the region where the graph is below the x-axis. Those are shown in the attachment. For graphing purposes, I find this comparison to zero works well.
__
For an algebraic solution, I like the compound inequality method shown above. That only works well when the inequality is of the form ...
|f(x)| < (some number) . . . . or ≤
If the inequality symbol points away from the absolute value expression, or if the (some number) expression involves the variable, then it is probably better to write the inequality in two parts with appropriate domain specifications:
|f(x)| > g(x) ⇒ f(x) > g(x) for f(x) > 0; or -f(x) > g(x) for f(x) < 0
Any solutions to these inequalities must respect their domains.