Answer:348
Step-by-step explanation:
For composite prisms, where the bases are a composite shape, the area of the bases is the sum of the areas of the parts it is made of. The volume of the composite prism is then given by multiplying the whole base area by the height of the prism.In math, volume is the amount of space in a certain 3D object. For instance, a fish tank has 3 feet in length, 1 foot in width and two feet in height. To find the volume, you multiply length times width times height, which is 3x1x2, which equals six. So the volume of the fish tank is 6 cubic feet.
The answer is 270 , I multiplied 15 by 18 and got 270
<span>An equation is a statement of equality „=‟ between two expression for particular</span>values of the variable. For example5x + 6 = 2, x is the variable (unknown)The equations can be divided into the following two kinds:Conditional Equation:<span>It is an equation in which two algebraic expressions are equal for particular</span>value/s of the variable e.g.,<span>a) 2x <span>= <span>3 <span>is <span>true <span>only <span>for <span>x <span>= 3/2</span></span></span></span></span></span></span></span></span><span> b) x</span>2 + x – <span> 6 = 0 is true only for x = 2, -3</span> Note: for simplicity a conditional equation is called an equation.Identity:<span>It is an equation which holds good for all value of the variable e.g;</span><span>a) (a <span>+ <span>b) x</span></span></span><span>ax + bx is an identity and its two sides are equal for all values of x.</span><span> b) (x + 3) (x + 4)</span> x2<span> + 7x + 12 is also an identity which is true for all values of x.</span>For convenience, the symbol „=‟ shall be used both for equation and identity. <span>1.2 Degree <span>of <span>an Equation:</span></span></span>The degree of an equation is the highest sum of powers of the variables in one of theterm of the equation. For example<span>2x <span>+ <span>5 <span>= <span>0 1</span></span></span></span></span>st degree equation in single variable<span>3x <span>+ <span>7y <span>= <span>8 1</span></span></span></span></span>st degree equation in two variables2x2 – <span> <span>7x <span>+ <span>8 <span>= <span>0 2</span></span></span></span></span></span>nd degree equation in single variable2xy – <span> <span>7x <span>+ <span>3y <span>= <span>2 2</span></span></span></span></span></span>nd degree equation in two variablesx3 – 2x2<span> + <span>7x + <span>4 = <span>0 3</span></span></span></span>rd degree equation in single variablex2<span>y <span>+ <span>xy <span>+ <span>x <span>= <span>2 3</span></span></span></span></span></span></span>rd degree equation in two variables<span>1.3 Polynomial <span>Equation <span>of <span>Degree n:</span></span></span></span>An equation of the formanxn + an-1xn-1 + ---------------- + a3x3 + a2x2 + a1x + a0<span> = 0--------------(1)</span>Where n is a non-negative integer and an<span>, a</span>n-1, -------------, a3<span>, a</span>2<span>, a</span>1<span>, a</span>0 are realconstants, is called polynomial equation of degree n. Note that the degree of theequation in the single variable is the highest power of x which appear in the equation.Thus3x4 + 2x3 + 7 = 0x4 + x3 + x2<span> <span>+ <span>x <span>+ <span>1 <span>= <span>0 , x</span></span></span></span></span></span></span>4 = 0<span>are <span>all <span>fourth-degree polynomial equations.</span></span></span>By the techniques of higher mathematics, it may be shown that nth degree equation ofthe form (1) has exactly n solutions (roots). These roots may be real, complex or amixture of both. Further it may be shown that if such an equation has complex roots,they occur in pairs of conjugates complex numbers. In other words it cannot have anodd number of complex roots.<span>A number <span>of the <span>roots may <span>be equal. Thus <span>all four <span>roots of x</span></span></span></span></span></span>4 = 0<span>are <span>equal <span>which <span>are <span>zero, <span>and <span>the <span>four <span>roots <span>of x</span></span></span></span></span></span></span></span></span></span>4 – 2x2 + 1 = 0<span>Comprise two pairs of equal roots (1, 1, -1, -1)</span>
For this case we have the following data:
700 rabbits that represent 500% of the population of last year. So, to obtain the rabbit population of last year, we developed a rule of three:
700 -----------> 500%
x ---------------> 100%
Where x represents the rabbit population of last year.
Clearing x we have:

rabbits
In this way, last year there was a population of 140 rabbits.
Answer:
140 rabbits