You should get photomath (not promotion)
The equation to be solved is: 3 [ 2 ^ (2t - 5) ] - 4 = 10
The steps are:
1) transpose - 4=> 3 [ 2^ (2t - 5) ] = 10 + 4
2) Combine like terms => 3 [2^ (2t - 5) ] = 14
3) Divide both terms by 3 => 2^ (2t - 5) = 14 / 3
4) Take logarithms of both sides => (2t - 5) log (2) = log (14/3)
5) Divide both sides by log (2) =>
log (14/3)
2t - 5 = -------------------
log (2)
6) transpose - 5+>
log (14/3)
2t = ------------------- + 5 = 2.22 + 5
log (2)
2t = 7.22
7) divide both sides by 2 => t = 7.22 / 2 = 3.61
The equation of the tangent to the curve at the point P(2, -10) is:
y = 8x - 26



We need to find the coordinates of point Q where the slope of the tangent to the curve f(x) must also be 8.

Now we have a quadratic:

which simplifies to:

which factorizes to:(x + 4)(x - 2) = 0
Therefore x = -4, 2.
f(-4) = 48
Therefore the coordinates of Q are (-4, 48).
Answer:
3
Step-by-step explanation:
If the wire is in a square and all the sides are 5 inches when you unfold the wire it will be 20 inches long so if the length of the wire ina regtangle is 7 then the width is 3
Answer:
No, Isiah is not correct. The GCF of the coefficients is 1, and there are no common variables among all three terms of the polynomial. 5b4 is a factor of -25a2b5 and -35b4, but not a3. Additionally, a2 is a factor of a3 and -25a2b5, but not -35b4.
Step-by-step explanation: