Answer:
Figures attatched
Explanation:
1. Restriction enzymes cut the DNA in specific places of a specific sequence. Each restriction enzyme has different sequences of recognition.
2. Palindromic sequences are sequences that can be read the same in both senses (3' and 5'), for that reason restriction enzymes can cut both DNA strands
Now, for the first image: if a molecule has 5 restriction sites that are known for a single restriction enzyme, the enzyme will cut the DNA 5 times. If you see the image, the number of fragments is the number of restriction sites +1. In this case, it is 5+1=6 DNA fragments.
In the case of two different palindromic sequences, two different restriction enzymes recognize different sequence. If just one enzyme is present, the only cutting site will be the one that has the palindromic sequence recognizable. So, the number of fragments will be 1+1=2 DNA fragments (figure 2)
Answer: A microscope is an instrument that produces a clear magnified image of an object viewed through it. A microscope must be able not only to magnify objects sufficiently but also to resolve, or separate, the fine details of the object that are of interest to the viewer. In the optical microscope visible light rays, reflected from or transmitted by the viewed object, pass through a series of lenses and form an enlarged image of the object. This image is produced at the normal distance of clearest vision, which is about 10 inches, or 25 centimetres, from the eye of the viewer.
Answer/ Explanation:
a. The genotype of a homozygous white eyed long winged female would be Vg+Vg+XrXr. We denote the white allele as recessive (r) because the XY male only has one copy and yet has red eyes, so the red eye trait (R) must be dominant. A homozygous red eyed vestigial winged male would have be VgVgXRY. The possible gametes for the female are Vg+Xr only. For the male, the possible gametes are VgXR or VgY
The attached punnett square shows the results of the cross. The females will all be Vg+VgXRXr. The males will all be Vg+VgXRY (must inherit Y from father). That means they will all have normal length wings, the males will have white eyes and the females will have red eyes.
b. The F2 flies arise from intercrossing the F1, so the cross will be Vg+VgXRXr x Vg+VgXRY. The possible gametes for the mother are: Vg+XR, Vg+Xr, VgXR or VgXr. The possible gametes for the father are Vg+Xr
, Vg+Y
, VgXr
, VgY
. The attached punnet square shows this cross. The ratio of the phenotypes will be 6:6:2:2, or 3:3:1:1 (long-winged red eye: long-winged white eye: vestigial wing red eye: vestigial wing white eye), genotypes shown in the attachment.
c. F1 cross back to the mother would be Vg+VgXRY x Vg+Vg+XrXr. The genotypes are shown in the attached punnet square. The offspring will all be long-winged with white eyes. The F1 to the father would be Vg+VgXRXr x VgVgXRY. The ratio would be 3:3:1:1 long-winged red eye: long-winged white eye: vestigial wing red eye: vestigial wing white eye
Answer:
Water molecules tend to stick together due to the structure and charge of the atoms present in the water. Hydrogen atoms are positively charged while oxygen atoms are negatively charged. ... All water molecules are exerting cohesive forces on all the molecules around them including those on the surface of a body of water
Vascular plants<span> have two distinct organ systems: a </span>shoot<span>system and a </span>root<span> system. The </span>shoot<span> system consists of two portions: the vegetative (non-</span>reproductive<span>) parts of the plant, such as the leaves and the stems; and the </span>reproductive<span> parts of the plant, which include flowers and fruits.</span>