<span>Simplifying
x4 = 16
Solving
x4 = 16
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Simplifying
x4 = 16
Reorder the terms:
-16 + x4 = 16 + -16
Combine like terms: 16 + -16 = 0
-16 + x4 = 0
Factor a difference between two squares.
(4 + x2)(-4 + x2) = 0
Factor a difference between two squares.
(4 + x2)((2 + x)(-2 + x)) = 0
Subproblem 1
Set the factor '(4 + x2)' equal to zero and attempt to solve:
Simplifying
4 + x2 = 0
Solving
4 + x2 = 0
Move all terms containing x to the left, all other terms to the right.
Add '-4' to each side of the equation.
4 + -4 + x2 = 0 + -4
Combine like terms: 4 + -4 = 0
0 + x2 = 0 + -4
x2 = 0 + -4
Combine like terms: 0 + -4 = -4
x2 = -4
Simplifying
x2 = -4
The solution to this equation could not be determined.
This subproblem is being ignored because a solution could not be determined.
Subproblem 2
Set the factor '(2 + x)' equal to zero and attempt to solve:
Simplifying
2 + x = 0
Solving
2 + x = 0
Move all terms containing x to the left, all other terms to the right.
Add '-2' to each side of the equation.
2 + -2 + x = 0 + -2
Combine like terms: 2 + -2 = 0
0 + x = 0 + -2
x = 0 + -2
Combine like terms: 0 + -2 = -2
x = -2
Simplifying
x = -2
Sub-problem 3
Set the factor '(-2 + x)' equal to zero and attempt to solve:
Simplifying
-2 + x = 0
Solving
-2 + x = 0
Move all terms containing x to the left, all other terms to the right.
Add '2' to each side of the equation.
-2 + 2 + x = 0 + 2
Combine like terms: -2 + 2 = 0
0 + x = 0 + 2
x = 0 + 2
Combine like terms: 0 + 2 = 2
x = 2
Simplifying
x = 2Solutionx = {-2, 2}</span>
Licenciado en Letrase (base 20 y altura 10 cm.
34 as a percent is 3400%
In order to get this number you move the decimal to places to the right:
34.0 ---> 3400.0 =
3400%
Answer:

Step-by-step explanation:
Jeremy rides a Ferris wheel. The graph shows h, Jeremy’s height above the ground at any time during the ride
Number line represents the height above the ground at any time during the ride.
the shaded part of the graph lies between 10 and 50, also we have solid dot at 10 and 50.
So height of the inequality is
