The first thing we must do for this case is to define a variable.
We have then:
x: weight of each pallet with cement
We then have the following equation:
16x = 4856
Clearing x we have:
x = (4856) / (16)
x = 303.5 punds
Answer:
each pallet with cement weigh:
x = 303.5 punds
Answer:1.8
Step-by-step explanation:
Answer:
Step-by-step explanation:
<em>Key Differences Between Covariance and Correlation
</em>
<em>The following points are noteworthy so far as the difference between covariance and correlation is concerned:
</em>
<em>
</em>
<em>1. A measure used to indicate the extent to which two random variables change in tandem is known as covariance. A measure used to represent how strongly two random variables are related known as correlation.
</em>
<em>2. Covariance is nothing but a measure of correlation. On the contrary, correlation refers to the scaled form of covariance.
</em>
<em>3. The value of correlation takes place between -1 and +1. Conversely, the value of covariance lies between -∞ and +∞.
</em>
<em>4. Covariance is affected by the change in scale, i.e. if all the value of one variable is multiplied by a constant and all the value of another variable are multiplied, by a similar or different constant, then the covariance is changed. As against this, correlation is not influenced by the change in scale.
</em>
<em>5. Correlation is dimensionless, i.e. it is a unit-free measure of the relationship between variables. Unlike covariance, where the value is obtained by the product of the units of the two variables.
</em>
You can find more here: http://keydifferences.com/difference-between-covariance-and-correlation.html#ixzz4qg5YbiGj
Problem 1
Domain = {-1, -3, 2, 1}
Range = {5, 0, 2}
The domain is the set of possible inputs and the range is the set of possible outputs. This is a function because each input goes to exactly one output.
========================================
Problem 2
This is a function as well. We do not have any input going to multiple outputs.
Domain = {-2, -3, 5}
Range = {6, 7, 8}
========================================
Problem 3
This is not a function. The input -4 goes to more than one output (outputs 3 and -1 at the same time)
Domain = {-4, -2, 0}
Range = {3, -1, -2, 4}
It goes 19 1 and 4ths to the area surface