Answer:
Graph D is correct
Step-by-step explanation:
This is complicated because the scales on the x-axis and y-axis are not the same. Graph D has the correct y-intercepts and the correct slopes. The solution is x = 500, where the two lines intersect.
Answer:
-2 - 8i
Step-by-step explanation:
To find the conjugate of a complex number, change the sign of the imaginary part.
The conjugate of -2 + 8i is -2 - 8i.
NOTES:
- squared (²) means multiply that number by itself 2 times
- cubed (³) means multiply that number by itself 3 times
- square root (√) means 2 numbers multiplied by itself on the inside simplify to 1 of that number on the outside of the radical
- cubed root (∛) means 3 numbers multiplied by itself on the inside simplify to 1 of that number on the outside of the radical
Answer: (C) 41
<u>Step-by-step explanation:</u>
![\quad 6^2+\sqrt[3]{125} \\= 6 \cdot 6+\sqrt[3]{5\cdot 5 \cdot 5}\\= 36 + 5\\= 41](https://tex.z-dn.net/?f=%5Cquad%206%5E2%2B%5Csqrt%5B3%5D%7B125%7D%20%5C%5C%3D%206%20%5Ccdot%206%2B%5Csqrt%5B3%5D%7B5%5Ccdot%205%20%5Ccdot%205%7D%5C%5C%3D%2036%20%2B%205%5C%5C%3D%2041)
***************************************************************************************
Answer: (C) 10
<u>Step-by-step explanation:</u>
![\bigg(\dfrac{7}{3}\times \sqrt[3]{27}-2\bigg)\times \dfrac{1}{5} + \sqrt{81}](https://tex.z-dn.net/?f=%5Cbigg%28%5Cdfrac%7B7%7D%7B3%7D%5Ctimes%20%5Csqrt%5B3%5D%7B27%7D-2%5Cbigg%29%5Ctimes%20%5Cdfrac%7B1%7D%7B5%7D%20%2B%20%5Csqrt%7B81%7D)
![=\bigg(\dfrac{7}{3}\times \sqrt[3]{3\cdot 3 \cdot 3}-2\bigg)\times \dfrac{1}{5} + \sqrt{9\cdot 9}](https://tex.z-dn.net/?f=%3D%5Cbigg%28%5Cdfrac%7B7%7D%7B3%7D%5Ctimes%20%5Csqrt%5B3%5D%7B3%5Ccdot%203%20%5Ccdot%203%7D-2%5Cbigg%29%5Ctimes%20%5Cdfrac%7B1%7D%7B5%7D%20%2B%20%5Csqrt%7B9%5Ccdot%209%7D)





***************************************************************************************
8² = 8 · 8 = 64 11² = 11 · 11 = 121
5³ = 5 · 5 · 5 = 125 3³ = 3 · 3 · 3 = 27
![\sqrt[3]{64}=\sqrt[3]{4\cdot 4\cdot 4}=4](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B64%7D%3D%5Csqrt%5B3%5D%7B4%5Ccdot%204%5Ccdot%204%7D%3D4)
![\sqrt[3]{8000}=\sqrt[3]{20\cdot 20\cdot 20}=20](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B8000%7D%3D%5Csqrt%5B3%5D%7B20%5Ccdot%2020%5Ccdot%2020%7D%3D20)
By iteratively substituting, we have



and the pattern continues down to the first term
,



Recall the formulas


It follows that



Area of Rectangle = Width × Length
Vegetable Garden
Width = 20
Length = 45
Area of Vegetable Garden = 20×45=900 Sq ft
Area of Entire Garden = Width × Length
Width = 20 + 2x
Length = 45 + 2x
Area = (20 + 2x)(45 + 2x)
(2x + 20)(2x + 45)
4x^2 + 90x + 45x + 900
Area of Entire Garden = 4x^2 + 135x + 900
Area of Flower Garden = Area of Entire Garden - Area of Vegetable Garden
(4x^2 + 135x + 900) - (20 × 45)
4x^2 + 135x + 900 - 900
Area of Flower Garden = 4x^2 + 135x