1) The outcomes for rolling two dice, the sample space, is as follows:
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)
There are 36 outcomes in the sample space.
2) The ways to roll an odd sum when rolling two dice are:
(1, 2), (1, 4), (1, 6), (2, 1), (2, 3), (2, 5), (3, 2), (3, 4), (3, 6), (4, 1), (4, 3), (4, 5), (5, 2), (5, 4), (5, 6), (6, 1), (6, 3), (6, 5). There are 18 outcomes in this event.
3) The probability of rolling an odd sum is 18/36 = 1/2 = 0.5
Hello from MrBillDoesMath!
Answer:
Solutions: x = +\- 5i or x = +\- sqrt(5)
Discussion:
Factor x^4 - 25:
x^4 - 25 = (x^2+5) (x^2-5) => factor x^2 - 5
x^4 - 25 = (x^2+5)(x + sqrt(5)) (x - sqrt(5)) => factor x^2 + 5
x^4 = 25 = (x +5i)(x-5i) (x + sqrt(5)) (x - sqrt(5))
Hence the solutions are
x = +\- 5i and x = +\- sqrt(5)
Thank you,
MrB