Answer:
Follows are the description of the given point:
Step-by-step explanation:
Please find the correct question in the attached file.
In point A:
An order of 5 items shall be placed in a total of 6 different ways.
(w for cars and ts and tricycles to be used)

In point B:
2 waggons so more tyres would be required if they ordered any more waggons.

keeping in mind that perpendicular lines have negative reciprocal slopes, hmmmm what's the slope of the equation above anyway?
![\bf x+y=6\implies y = \stackrel{\stackrel{m}{\downarrow }}{-1}x+6\qquad \impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20x%2By%3D6%5Cimplies%20y%20%3D%20%5Cstackrel%7B%5Cstackrel%7Bm%7D%7B%5Cdownarrow%20%7D%7D%7B-1%7Dx%2B6%5Cqquad%20%5Cimpliedby%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20slope-intercept~form%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y%3D%5Cunderset%7By-intercept%7D%7B%5Cstackrel%7Bslope%5Cqquad%20%7D%7B%5Cstackrel%7B%5Cdownarrow%20%7D%7Bm%7Dx%2B%5Cunderset%7B%5Cuparrow%20%7D%7Bb%7D%7D%7D%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

so we're really looking for the equation of a line whose slope is 1 and runs through (-5,-6).
![\bf (\stackrel{x_1}{-5}~,~\stackrel{y_1}{-6})~\hspace{10em} \stackrel{slope}{m}\implies 1 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{(-6)}=\stackrel{m}{1}[x-\stackrel{x_1}{(-5)}] \\\\\\ y+6=1(x+5)\implies y+6=x+5\implies y=x-1](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B-5%7D~%2C~%5Cstackrel%7By_1%7D%7B-6%7D%29~%5Chspace%7B10em%7D%20%5Cstackrel%7Bslope%7D%7Bm%7D%5Cimplies%201%20%5C%5C%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Bpoint-slope%20form%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y-y_1%3Dm%28x-x_1%29%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%5Cimplies%20y-%5Cstackrel%7By_1%7D%7B%28-6%29%7D%3D%5Cstackrel%7Bm%7D%7B1%7D%5Bx-%5Cstackrel%7Bx_1%7D%7B%28-5%29%7D%5D%20%5C%5C%5C%5C%5C%5C%20y%2B6%3D1%28x%2B5%29%5Cimplies%20y%2B6%3Dx%2B5%5Cimplies%20y%3Dx-1)
Answer: 36
Step-by-step explanation:
8-2+30
6+30
36
Full Question:
Find the volume of the sphere. Either enter an exact answer in terms of π or use 3.14 for π and round your final answer to the nearest hundredth. with a radius of 10 cm
Answer:
The volume of the sphere is ⅓(4,000π) cm³ or 4186.67cm³
Step-by-step explanation:
Given
Solid Shape: Sphere
Radius = 10 cm
Required
Find the volume of the sphere
To calculate the volume of a sphere, the following formula is used.
V = ⅓(4πr³)
Where V represents the volume and r represents the radius of the sphere.
Given that r = 10cm,.all we need to do is substitute the value of r in the above formula.
V = ⅓(4πr³) becomes
V = ⅓(4π * 10³)
V = ⅓(4π * 10 * 10 * 10)
V = ⅓(4π * 1,000)
V = ⅓(4,000π)
The above is the value of volume of the sphere in terms of π.
Solving further to get the exact value of volume.
We have to substitute 3.14 for π.
This gives us
V = ⅓(4,000 * 3.14)
V = ⅓(12,560)
V = 4186.666667
V = 4186.67 ---- Approximated
Hence, the volume of the sphere is ⅓(4,000π) cm³ or 4186.67cm³
Answer:
Step-by-step explanation:
Let x be the random variable representing the times a fire department takes to arrive at the scene of an emergency. Since the population mean and population standard deviation are known, we would apply the formula,
z = (x - µ)/σ
Where
x = sample mean
µ = population mean
σ = standard deviation
From the information given,
µ = 6 minutes
σ = 1 minute
the probability that fire department arrives at the scene in case of an emergency between 4 minutes and 8 minutes is expressed as
P(4 ≤ x ≤ 8)
For x = 4,
z = (4 - 6)/1 = - 2
Looking at the normal distribution table, the probability corresponding to the z score is 0.023
For x = 8
z = (8 - 6)/1 = 2
Looking at the normal distribution table, the probability corresponding to the z score is 0.98
Therefore,
P(4 ≤ x ≤ 8) = 0.98 - 0.23 = 0.75
The percent of emergencies that the fire department arrive at the scene in between 4 minutes and 8 minutes is
0.75 × 100 = 75%