let's firstly convert the mixed fraction to improper fraction and then multiply.
![\bf \stackrel{mixed}{3\frac{2}{5}}\implies \cfrac{3\cdot 5+2}{5}\implies \stackrel{improper}{\cfrac{17}{5}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{17}{~~\begin{matrix} 5 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}\cdot ~~\begin{matrix} 5 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~\implies 17](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B3%5Cfrac%7B2%7D%7B5%7D%7D%5Cimplies%20%5Ccfrac%7B3%5Ccdot%205%2B2%7D%7B5%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B17%7D%7B5%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B17%7D%7B~~%5Cbegin%7Bmatrix%7D%205%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%5Ccdot%20~~%5Cbegin%7Bmatrix%7D%205%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%5Cimplies%2017)
Answer:
The property the equation illustrates would be the zero property of addition.
Step-by-step explanation:
The additive property of zero states that when you have any number and add zero to it, your answer will always equal the original number.
Let

. Then

, and so as

, you have

. The limit is then equivalent to
Answer:
a) -7/9
b) 16 / (n² + 15n + 56)
c) 1
Step-by-step explanation:
When n = 1, there is only one term in the series, so a₁ = s₁.
a₁ = (1 − 8) / (1 + 8)
a₁ = -7/9
The sum of the first n terms is equal to the sum of the first n−1 terms plus the nth term.
sₙ = sₙ₋₁ + aₙ
(n − 8) / (n + 8) = (n − 1 − 8) / (n − 1 + 8) + aₙ
(n − 8) / (n + 8) = (n − 9) / (n + 7) + aₙ
aₙ = (n − 8) / (n + 8) − (n − 9) / (n + 7)
If you wish, you can simplify by finding the common denominator.
aₙ = [(n − 8) (n + 7) − (n − 9) (n + 8)] / [(n + 8) (n + 7)]
aₙ = [n² − n − 56 − (n² − n − 72)] / (n² + 15n + 56)
aₙ = 16 / (n² + 15n + 56)
The infinite sum is:
∑₁°° aₙ = lim(n→∞) sₙ
∑₁°° aₙ = lim(n→∞) (n − 8) / (n + 8)
∑₁°° aₙ = 1
Answer:400 multiplied by 5 percent then later multiplied by one, Answer: 20$
Step-by-step explanation: