Answer:
Attractive
Explanation:
Given that:
Temperature = 426 K
Volume / moles = 1.31 L / mol
So, for n = 1 , V = 1.31 L
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.08314 L bar/ K mol
Applying the equation as:
P × 1.31 L = 1 × 0.08314 L bar/ K mol × 426 K
<u>⇒P (ideal) = 27.0363 bar</u>
Using Van der Waal's equation
![\left(P+\frac{an^2}{V^2}\right)\left(V-nb\right)=nRT](https://tex.z-dn.net/?f=%5Cleft%28P%2B%5Cfrac%7Ban%5E2%7D%7BV%5E2%7D%5Cright%29%5Cleft%28V-nb%5Cright%29%3DnRT)
R = 0.08314 L bar/ K mol
Where, a and b are constants.
1 L = 1 dm³
For Ar, given that:
So, a = 1.355 bar dm⁶ / mol² = 1.355 bar L² / mol²
b = 0.0320 dm³ / mol = 0.0320 L / mol
So,
![\left(x+\frac{1.355\times \:1^2}{1.31^2}\right)\left(1.31-0.032\right)=35.41764](https://tex.z-dn.net/?f=%5Cleft%28x%2B%5Cfrac%7B1.355%5Ctimes%20%5C%3A1%5E2%7D%7B1.31%5E2%7D%5Cright%29%5Cleft%281.31-0.032%5Cright%29%3D35.41764)
![\frac{\left(x+\frac{1.355\times \:1^2}{1.31^2}\right)\left(1.31-0.032\right)}{1.278}=\frac{35.41764}{1.278}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cleft%28x%2B%5Cfrac%7B1.355%5Ctimes%20%5C%3A1%5E2%7D%7B1.31%5E2%7D%5Cright%29%5Cleft%281.31-0.032%5Cright%29%7D%7B1.278%7D%3D%5Cfrac%7B35.41764%7D%7B1.278%7D)
![x+\frac{1.355}{1.7161}=\frac{35.41764}{1.278}](https://tex.z-dn.net/?f=x%2B%5Cfrac%7B1.355%7D%7B1.7161%7D%3D%5Cfrac%7B35.41764%7D%7B1.278%7D)
![x=\frac{59.04852}{2.1931758}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B59.04852%7D%7B2.1931758%7D)
<u>⇒P (real) = 26.9238 bar</u>
Thus, P (real) is smaller than P (ideal) , the attractive force will dominate.