1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Iteru [2.4K]
3 years ago
11

A factory makes car parts in different quantities as shown in the table. How much would 9 parts​ cost?

Mathematics
1 answer:
lara [203]3 years ago
3 0

Answer:

$4.95

Step-by-step explanation:

Divide any number of parts by its corresponding price

Example  1.65/3 = .55

This value represents what each part is worth. Then multiply the price per part by the amount you are trying to find in this case 9

9 x .55 = 4.95

You might be interested in
Round 151.09 to the nearest whole
3241004551 [841]
It is rounded down to 151.
3 0
3 years ago
Read 2 more answers
-11b + 8 = -3 Whats the next step?
LenaWriter [7]

you want to sub 8 from both side then divide

3 0
3 years ago
12.
inna [77]
2(3x + 2 + x) = 6x + 4 + 2x = 8x + 4

A and D have the same solutions
5 0
3 years ago
Read 2 more answers
2 wholes equals to what
Jet001 [13]
Equal too 4 wholes that is my answer
8 0
4 years ago
Read 2 more answers
The taxiways and runways of a major airport are carefully monitored to expedite takeoffs and landings and to prevent collisions.
tatyana61 [14]

Answer:

18.04% probability that exactly 3 serious deviations and incursions will occur at LAX in a randomly selected year

Step-by-step explanation:

In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}

In which

x is the number of sucesses

e = 2.71828 is the Euler number

\mu is the mean in the given time interval.

Suppose the mean number of deviations and incursions per year at the Los Angeles International Airport (LAX) is 2.

This means that \mu = 2

Find the probability that exactly 3 serious deviations and incursions will occur at LAX in a randomly selected year

This is P(X = 3).

P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}

P(X = 3) = \frac{e^{-2}*2^{3}}{(3)!} = 0.1804

18.04% probability that exactly 3 serious deviations and incursions will occur at LAX in a randomly selected year

4 0
3 years ago
Other questions:
  • A grocery store bought yogurt for $2.60$ 2.60 per container and stored it in two refrigerators. During the night, one refrigerat
    15·2 answers
  • An oil painting originally cost $5500 and increases in value at a rate of 4% per year . Find the value of the painting after 15
    6·1 answer
  • Given the points (2,k) (2,k) and (0,−6) (0,−6) , for which values of k would the distance between the points be 5 – √ 5
    13·1 answer
  • I wanna know how to do the distributive property of subtraction to 8×56
    8·1 answer
  • I WILL REWARD BRAINLIEST
    10·1 answer
  • Martin has 5 cups of flour if he needs 1/4 cups of flour for one jumbo cookie how many jumbo cookies can he make?
    13·2 answers
  • What are the coordinates for Point S?
    9·2 answers
  • 13 x 2 + 3- 6 + 7 I NEED TO SHOW MY WORK HELP PLEASE AND TY
    14·2 answers
  • How to solve x/m = n/p. Solve for x. Please include steps for solving. Thank you
    14·1 answer
  • The algebra tiles represent the perfect square trinomial x2 10x c. what is the value of c? c =
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!