Answer:
Anaerobic respiration does not need oxygen. It happens when there is not enough oxygen for aerobic respiration. ... 100m sprinters respire using anaerobic respiration in their race because their bodies do not take in enough oxygen during the race to carry out aerobic respiration.
Explanation:
The magnitude of the work done by the electric field of the membrane is <u>W = 1.28 × 10⁻²⁰ Joules</u>.
We start with the necessity to take into account a value for the voltage present there in order to solve this problem by first considering that the membranes have two layers, one internal and one external, each responsible for producing a potential difference between the two levels.
As a result, in order to find a solution, it is necessary to take into account the potential difference between the two surfaces. In this instance, we'll assume a particular value for the load, but the recipient is free to substitute a different value if they prefer.
The product of the potential difference and the charge is used to define the work that an electric field performs. The charge of the potassium ion will be equal to that of its electron, so,
q = 1.6 × 10⁻¹⁹ Coulombs
Then the Work would be:
W = Vq
Here,
v = Potential difference
q = Charge
The 80mV potential difference we will have is quantified as follows:
W = (80mV (1V/1000mV))( 1.6 × 10⁻¹⁹ C)
W = 1.28 × 10⁻²⁰ Joules is the amount of work that the membrane's electric field has produced.
Find more on work done at : brainly.com/question/25573309
#SPJ4
Answer:
One of the central conclusions Mendel reached after studying and breeding multiple generations of pea plants was the idea that "[you cannot] draw from the external resemblances [any] conclusions as to [the plants'] internal nature." Today, scientists use the word "phenotype" to refer to what Mendel termed an organism's "external resemblance," and the word "genotype" to refer to what Mendel termed an organism's "internal nature." Thus, to restate Mendel's conclusion in modern terms, an organism's genotype cannot be inferred by simply observing its phenotype. Indeed, Mendel's experiments revealed that phenotypes could be hidden in one generation, only to reemerge in subsequent generations. Mendel thus wondered how organisms preserved the "elementen" (or hereditary material) associated with these traits in the intervening generation, when the traits were hidden from view.
We calculate the number of moles of water given its mass by dividing the mass by the molar mass.
n water = (36.04 g) / (18 g/mol)
n water = 2 mols
From the given balanced equation, every 6 moles of water produced will require 7 moles of oxygen.
n oxygen = (2 mols H2O) x (7 moles O2 / 6 moles H2O)
n oxygen = 2.33 mols O2