1720 ft^2 you just need to times all the numbers together.
Correct question is;
A football is kicked up into the air. Its height, H, above the ground, in meters, at t seconds can be modelled by () = 24 − 4.9²
(a) Determine the expression for the instantaneous rate of change in height at time t.
(b) Determine ' (2) What does ' (2) represent?
Answer:
A) '() = 24 − 9.8
B) '(2) = 4.4 m/s
It means that at a distance of 2 m above the ground, the speed of the ball is 4.4 m/s
Step-by-step explanation:
We are given the function to represent the height as;
() = 24 − 4.9²
A) expression for the instantaneous rate of change in height at time t will be gotten by differentiation of the height function. Thus;
'() = 24 − 9.8
B) '(2) = 24 - 9.8(2)
'(2) = 4.4 m/s
This means that at a distance of 2 m above the ground, the speed of the ball is 4.4 m/s
<span>All triangles use the same formula for area:
1/2 * B * H</span>
Answer: 2 seconds.
Step-by-step explanation:
Given : A ball is thrown upward with an initial velocity of 16 ft/sec from a height of 32 ft above the ground.
The height, in feet, of the ball t sec after it is thrown can be represented by

When ball reaches the ground , s= 0.

Divide both sides by 16 , we get

But time cannot be negative , so t= 2.
Hence , it will take 2 seconds for the ball to reach the ground.
Answer:
Present Value = ![X [\frac{1}{(1 + 0.12)^{1} } + \frac{1}{(1 + 0.12)^{2} } + \frac{1}{(1 + 0.12)^{3} } + \frac{1}{(1 + 0.12)^{4} } + \frac{1}{(1 + 0.12)^{5} } ]](https://tex.z-dn.net/?f=X%20%5B%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B1%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B2%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B3%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B4%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B5%7D%20%7D%20%5D)
Step-by-step explanation:
To find - If discount rate is 12%, the present value of Rs X received at the end of each year for the next five years is equal to .... ?
Solution -
We know that, formula for finding the Present vale is given by
Present value = Future value / (1 + r)ⁿ
where r is the rate of interest
and n is Number of periods
Now,
Here in the question, we have
r = 12% = 12/100 = 0.12
n = 5
Also, Given that, we have received Rs X at the end of each year
So,
Present Value = 
= ![X [\frac{1}{(1 + 0.12)^{1} } + \frac{1}{(1 + 0.12)^{2} } + \frac{1}{(1 + 0.12)^{3} } + \frac{1}{(1 + 0.12)^{4} } + \frac{1}{(1 + 0.12)^{5} } ]](https://tex.z-dn.net/?f=X%20%5B%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B1%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B2%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B3%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B4%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B5%7D%20%7D%20%5D)
⇒Present Value = ![X [\frac{1}{(1 + 0.12)^{1} } + \frac{1}{(1 + 0.12)^{2} } + \frac{1}{(1 + 0.12)^{3} } + \frac{1}{(1 + 0.12)^{4} } + \frac{1}{(1 + 0.12)^{5} } ]](https://tex.z-dn.net/?f=X%20%5B%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B1%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B2%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B3%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B4%7D%20%7D%20%20%2B%20%5Cfrac%7B1%7D%7B%281%20%2B%200.12%29%5E%7B5%7D%20%7D%20%5D)