1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zmey [24]
3 years ago
7

F(x) = −16(x − 4) + 255 What is the value of f(x) when x = 5?

Mathematics
1 answer:
kobusy [5.1K]3 years ago
4 0
Replace the x's values in the equation with 5.

f(5)= -16(x-4) + 225
= -16(1) + 225
= -16 + 225
= 209

The Answer is 209
You might be interested in
Can you define f(0, 0) = c for some c that extends f(x, y) to be continuous at (0, 0)? If so, for what value of c? If not, expla
Ahat [919]

(i) Yes. Simplify f(x,y).

\displaystyle \frac{x^2 - x^2y^2 + y^2}{x^2 + y^2} = 1 - \frac{x^2y^2}{x^2 + y^2}

Now compute the limit by converting to polar coordinates.

\displaystyle \lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2} = \lim_{r\to0} \frac{r^4 \cos^2(\theta) \sin^2(\theta)}{r^2} = 0

This tells us

\displaystyle \lim_{(x,y)\to(0,0)} f(x,y) = 1

so we can define f(0,0)=1 to make the function continuous at the origin.

Alternatively, we have

\dfrac{x^2y^2}{x^2+y^2} \le \dfrac{x^4 + 2x^2y^2 + y^4}{x^2 + y^2} = \dfrac{(x^2+y^2)^2}{x^2+y^2} = x^2 + y^2

and

\dfrac{x^2y^2}{x^2+y^2} \ge 0 \ge -x^2 - y^2

Now,

\displaystyle \lim_{(x,y)\to(0,0)} -(x^2+y^2) = 0

\displaystyle \lim_{(x,y)\to(0,0)} (x^2+y^2) = 0

so by the squeeze theorem,

\displaystyle 0 \le \lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2} \le 0 \implies \lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2} = 0

and f(x,y) approaches 1 as we approach the origin.

(ii) No. Expand the fraction.

\displaystyle \frac{x^2 + y^3}{xy} = \frac xy + \frac{y^2}x

f(0,y) and f(x,0) are undefined, so there is no way to make f(x,y) continuous at (0, 0).

(iii) No. Similarly,

\dfrac{x^2 + y}y = \dfrac{x^2}y + 1

is undefined when y=0.

5 0
2 years ago
The length of a rectangular garden is 6 more than its width. If the perimeter is 32 feet, what is the width and the area of the
PolarNik [594]

Answer:

{\fbox{ \sf{Width \: of \: a \: rectangular \: garden \:  = 5 \: feet}}}

\boxed{ \sf{ \: Area \: of \: a \: rectangular \: garden = 55 {ft}^{2}}}

Step-by-step explanation:

\star Let the width of a rectangular garden be 'w'

\star Length of a rectangular garden = 6 + w

\star Perimeter of a rectangular garden = 32 feet

<u>\longrightarrow</u><u> </u><u>Finding </u><u>the</u><u> </u><u>width</u><u> </u><u>of</u><u> </u><u>a</u><u> </u><u>rectangular</u><u> </u><u>garden</u> :

\boxed{ \sf{ \: Perimeter \: of \: a \: rectangle \:  =  \: 2(length + width}}

\mapsto{ \text{32 = 2(6 + w + w)}}

\text{Step \: 1 \:  : Collect \: like \: terms}

Like terms are those which have the same base

\mapsto{ \text{32 = 2(6 + 2w) }}

\text{Step \: 2 \:  : Distribute \: 2 \: through \: the \: parentheses}

\mapsto{ \text{32 = 12 + 4w}}

\text{Step \: 3 \:  : Swap \: the \: sides \: of \: the \: equation}

\mapsto{ \text{4w + 12 = 32}}

\text{Step \: 4 \:  : Move \: 12 \: to \: right \: hand \: side \: and \: change \: its \: sign}

\mapsto{ \text{4w = 32 - 12}}

\text{Step \: 5 \:  : Subtract \: 12 \: from \: 32}

\mapsto{ \sf{4w = 20}}

\text{Step \: 6 \:  : Divide \: both \: sides \: by \: 4}

\mapsto{ \sf{ \frac{4w}{4}  =  \frac{20}{4}}}

\text{Step \: 7 \:  : Calculate}

\mapsto{ \text{w = 5}}

Width of a rectangular garden = 5 feet

\longrightarrow <u>Substituting </u><u>/</u><u> </u><u>Replacing </u><u>the </u><u>value </u><u>of </u><u>w </u><u>in </u><u>6</u><u> </u><u>+</u><u> </u><u>w </u><u>in </u><u>order </u><u>to </u><u>find</u><u> </u><u>the</u><u> </u><u>length</u><u> </u><u>of</u><u> </u><u>a</u><u> </u><u>rectangular </u><u>garden</u>

\mapsto{ \sf{Length = 6 + w = 6 + 5 =  \bold{11 \: feet} }}

\longrightarrow <u>Finding</u><u> </u><u>the</u><u> </u><u>area</u><u> </u><u>of</u><u> </u><u>a</u><u> </u><u>rectangular</u><u> </u><u>garden</u><u> </u><u>having</u> <u>length of 11 feet and</u><u> </u><u>width</u><u> </u><u>of</u><u> </u><u>5</u><u> </u><u>feet</u> :

\boxed{ \sf{Area \: of \: a \: rectangle = length \:∗ \:  width}}

\mapsto{ \text{Area \:  =  \: 11 \: ∗ \:   5}}

\mapsto{ \sf{Area \:  = 55 \:  {ft}^{2} }}

Area of a rectangular garden = 55 ft²

Hope I helped!

Best regards! :D

~\sf{TheAnimeGirl}

6 0
3 years ago
38. What is the solution to 2(x - 6) = 14?
ivanzaharov [21]

Answer:

x=13, 16(x-1)

Step-by-step explanation:

For 38, you have to first divide both sides by 2.

This becomes, x-6=7

Add 6 to both sides

x=13.

For 40. You can can distribute the 8.

This makes it 16x-16.

With this you can than, factor out the 16.

16(x-1).

5 0
4 years ago
Read 2 more answers
According to the weather report, what is the chance of rain or snow?
Viefleur [7K]

Answer:

50? or together will be 90?

5 0
3 years ago
Read 2 more answers
What is the hourly utilization rate of each resource if the bottleneck(s) work nonstop during a 10-hour day?
Bess [88]

Answer:

100%

Step-by-step explanation:

Utilization rate =

Hours worked / total working hours per day

Since the bottle works nonstop during a 10-hour day, it worked 10 hours

Utilization rate in percentage = (10/10)×100%

= 100%

6 0
3 years ago
Other questions:
  • Let point C be between V and W on VW Given that VW = 61, VC = z + 13, and CW = z + 8, solve for z.
    8·1 answer
  • How do you show work for 4÷248 in fourth grade division
    7·1 answer
  • Sanji earns $2,000 a month. He wants an
    10·1 answer
  • The domain of F(x) is the set of all numbers greater than or equal to 0 and
    12·1 answer
  • If the graph of f(x)=x^2, how will the graph be affected if it is changed to f(x)=1/3x^2?
    5·1 answer
  • PLZ HELP! I REALLY NEED HELP ON THIS! WILL GIVE BRAINLEIST!!! PLZZZDetermine any data values that are missing from the table, as
    9·1 answer
  • The blue dot is at what value on the number line?
    8·2 answers
  • Click an item in the list or group of pictures at the bottom of the problem and, holding the button down, drag it into the
    7·2 answers
  • Suppose △ABC has exterior angle at vertex B. The exterior angle is (12x−24)°, m∠A=(3x−6)°, and m∠C=(6x+12)°. What is the measure
    5·1 answer
  • Please help!! thanks!
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!