Yes the product of two integers with different sings can be positive or negative if is negative and negative equal a positive
Answer:
The small balloon bouquet uses 7 balloons and the large one uses
18 balloons.
Step-by-step explanation:
Let's say that small balloon bouquets are S and large balloon bouquets are L. For the graduation party the employee assembled 6 small bouquets and 6 large bouquets, the total number of balloon used is 150. To put the sentence into an equation will be:
6S + 6L= 150
S+L= 25 ----> 1st equation
For Father's Day, the employee uses 6 small bouquet and 1 large bouquet, the total number of balloons used is 60. The equation will be:
6S + 1L= 60
1L= 60- 6S ----> 2nd equation
We can solve the number of small balloon bouquet by substitute the 2nd equation into 1st. The calculation will be:
S+L = 25
S+ (60-6S)= 25
-5S= 25-60
-5S= -35
S= -35/-5
S=7
Then we can find L by substitute S value to 1st or 2nd equation.
S+L=25
7+L=25
L=18
Hope this helps ;)
Answer:
.
Step-by-step explanation:
It is given that a number, x, rounded to 2 significant figures is 1300.
It is possible if,
1. The value of x is greater than of equal to 1250 and less than or equal to 1300.
i.e.,
...(1)
2. The value of x is greater than of equal to 1300 and less than 1350.
i.e.,
...(2)
On combining (1) and (2), we get

1350 is not included in the error interval for x.
Interval notation is
.
Therefore, the error interval for x is
.
9514 1404 393
Answer:
- 52°: angles 4, 13, 18
- 128°: angles 1, 3, 14, 17
- 44°: angles 5, 12, 15
- 136°: angles 2, 6, 11, 16
- 84°: angles 7, 10
- 96°: angles 8, 9
Step-by-step explanation:
Where a transversal (t or u) crosses parallel lines (m and n), there are four angles formed at each intersection. Corresponding and vertical angles are congruent.
Angles in a linear pair are always supplementary. Of course, the angles interior to a triangle always total 180°. These facts let you find the relationships of all the angles in the figure.
Angle 13 corresponds to the given angle 52°, so has the same measure. Angles 4 and 18 are vertical angles with respect to those, so also have the same measure. Angles 1 and 3, 14 and 17 are supplementary to the ones just named, so all have measure 128°.
In the same way, angles on the other side of the figure can be found from the one marked 44°. Angles 5, 12, and 15 also have that measure; and angles 2, 6, 11, and 16 are supplementary, 136°. Angles 7 and 10 finish the triangle interior so that its sum is 180°. That means they are 180° -52° -44° = 84°. Of course, angles 8 and 9 are the supplement of that value, 96°.
In summary:
- 52°: angles 4, 13, 18
- 128°: angles 1, 3, 14, 17
- 44°: angles 5, 12, 15
- 136°: angles 2, 6, 11, 16
- 84°: angles 7, 10
- 96°: angles 8, 9
If you think about it, you have your answer in your question.
Convert 2/4 to 1/2 which in decimal form, is .5.
You’re final answer is -2.3,-2 2/4,-2.6.
I hope this helps!