Answer:
ΔRMS ≅ ΔRQS by AAS
Step-by-step explanation:
See the diagram attached.
Given that ∠ RMS = ∠ RQS and N is any point on RS and ∠ MRS = ∠ SRQ.
Therefore, between Δ RMS and Δ RQS, we have
(i) ∠ RMS = ∠ RQS {Given}
(ii) ∠ MRS = ∠ SRQ {Also given} and
(iii) RS is the common side.
So, by angle-angle-side i.e. AAS criteria we can write ΔRMS ≅ ΔRQS. (Answer)
Answer:
Option 4 is correct. The length of PR is 6.4 units.
Step-by-step explanation:
From the given figure it is noticed that the triangle PQR and triangle MQR.
Let the length of PR be x.
Pythagoras formula

Use pythagoras formula for triangle PQM.





The value of PM is 10. The length of PR is x, so the length of MR is (10-x).
Use pythagoras formula for triangle PQR.


.....(1)
Use pythagoras formula for triangle MQR.



.... (2)
From equation (1) and (2) we get




Therefore length of PR is 6.4 units and option 4 is correct.
I Domitila get hungry :
Step-by-step explanation: