Since x=x, this is an isosceles right triangle. By the Pythagorean Theorem:
h^2=a^2+b^2 (the hypotenuse squared is equal to the sum of the squared sides)
5^2=x^2+x^2
25=2x^2
2x^2=25
x^2=25/2
x=√(25/2)
x=5/√2 now if we rationalize the denominator...
x=(5√2)/(√2√2)
x=(5√2)/2
Answer:
<u>2/5 < 5/8 < 6/7 < 1 </u>
<u>OR</u>
<u>1 > 6/7 > 5/8 > 2/5</u>
Step-by-step explanation:
It is required to compare Two-fifths, Six-sevenths, Five-eighths, and 1
Two-fifths = 2/5
Six-sevenths = 6/7
Five-eighths = 5/8
So, the given numbers are: 2/5, 6/7, 5/8, and 1
We need to make the numbers in order from the least to the greatest or from the greatest to the least
The easy method is convert the rational numbers to decimal numbers
So,
2/5 = 0.4
6/7 ≈ 0.857
5/8 = 0.625
1 = 1
So, the numbers form the least to the greatest are:
0.4 , 0.625 , 0.857 , 1
So,
2/5 , 5/8 , 6/7 , 1
The inequality correctly compares the numbers are:
<u>2/5 < 5/8 < 6/7 < 1</u>
Or can be written from the greatest to the least as:
<u>1 > 6/7 > 5/8 > 2/5 </u>
The formula is d=C/π.
The diameter is 2 times the radius
The formula for the circumference using the radius is 2πr.
in order to do this backwards, we would have to do 16÷2÷π, but we're not looking for the radius.
Therefore, we take out the ÷2 part, which would be 16÷π
16 is the circumference
16÷π=d
d=C÷π
Answer:
325
Step-by-step explanation:
You must have heard about Arithmetic Progressions (AP)
Arithmetic progressions are a series of numbers such that every successive number is the sum of a constant number and the previous number.
Our very own counting numbers form AP
For example :-
2 = 1 + <u>1</u>
3 = 2 + <u>1</u>
4 = 3 + <u>1</u>
The number in bold (1) is that constant number which is added to a number to form its successive number.
To find the sum of series forming AP, we use the formula :-

here,
- n is the number of terms
- a is the first number of the series
- an is the last number of the series
So we'll use all this information to find the sum of continuous numbers from 1 to 25 where 1 is the first term(a) and 25 is the last(an).
and n is 25




So, the value of S comes out to be 325.