Answer:
4x+4
Step-by-step explanation:
For this case we must find the product of the following expression:
![\sqrt [3] {5} * \sqrt {2}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B5%7D%20%2A%20%5Csqrt%20%7B2%7D)
By definition of properties of powers and roots we have:
![\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}](https://tex.z-dn.net/?f=%5Csqrt%20%5Bn%5D%20%7Ba%20%5E%20m%7D%20%3D%20a%20%5E%20%7B%5Cfrac%20%7Bm%7D%20%7Bn%7D%7D)
We rewrite the expression using the lowest common index of 6, then:
![5 ^ {\frac {1} {3}} * 2 ^ {\frac {1} {2}} =](https://tex.z-dn.net/?f=5%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B3%7D%7D%20%2A%202%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B2%7D%7D%20%3D)
We rewrite the terms in an equivalent way:
![5 ^ {\frac {2} {6}} * 2 ^ {\frac {3} {6}} =](https://tex.z-dn.net/?f=5%20%5E%20%7B%5Cfrac%20%7B2%7D%20%7B6%7D%7D%20%2A%202%20%5E%20%7B%5Cfrac%20%7B3%7D%20%7B6%7D%7D%20%3D)
We rewrite the expression using the property mentioned:
![\sqrt [6] {5 ^ 2} * \sqrt [6] {2 ^ 3} =](https://tex.z-dn.net/?f=%5Csqrt%20%5B6%5D%20%7B5%20%5E%202%7D%20%2A%20%5Csqrt%20%5B6%5D%20%7B2%20%5E%203%7D%20%3D)
We combine using the product rule for radicals:
![\sqrt [n] {a} * \sqrt [n] {b} = \sqrt [n] {ab}](https://tex.z-dn.net/?f=%5Csqrt%20%5Bn%5D%20%7Ba%7D%20%2A%20%5Csqrt%20%5Bn%5D%20%7Bb%7D%20%3D%20%5Csqrt%20%5Bn%5D%20%7Bab%7D)
So:
![\sqrt [6] {5 ^ 2 * 2 ^ 3} =\\\sqrt [6] {25 * 8} =\\\sqrt[6]{200}](https://tex.z-dn.net/?f=%5Csqrt%20%5B6%5D%20%7B5%20%5E%202%20%2A%202%20%5E%203%7D%20%3D%5C%5C%5Csqrt%20%5B6%5D%20%7B25%20%2A%208%7D%20%3D%5C%5C%5Csqrt%5B6%5D%7B200%7D)
ANswer:
Option b
![\bf \qquad \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\to &\$4000\\ r=rate\to 2\%\to \frac{2}{100}\to &0.02\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{annually, thus once} \end{array}\to &1\\ t=years\to &4 \end{cases} \\\\\\ A=4000\left(1+\frac{0.02}{1}\right)^{1\cdot 4}\implies A=4000(1.02)^4\implies A\approx 4329.73](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Ctextit%7BCompound%20Interest%20Earned%20Amount%7D%0A%5C%5C%5C%5C%0AA%3DP%5Cleft%281%2B%5Cfrac%7Br%7D%7Bn%7D%5Cright%29%5E%7Bnt%7D%0A%5Cquad%20%0A%5Cbegin%7Bcases%7D%0AA%3D%5Ctextit%7Baccumulated%20amount%7D%5C%5C%0AP%3D%5Ctextit%7Boriginal%20amount%20deposited%7D%5Cto%20%26%5C%244000%5C%5C%0Ar%3Drate%5Cto%202%5C%25%5Cto%20%5Cfrac%7B2%7D%7B100%7D%5Cto%20%260.02%5C%5C%0An%3D%0A%5Cbegin%7Barray%7D%7Bllll%7D%0A%5Ctextit%7Btimes%20it%20compounds%20per%20year%7D%5C%5C%0A%5Ctextit%7Bannually%2C%20thus%20once%7D%0A%5Cend%7Barray%7D%5Cto%20%261%5C%5C%0At%3Dyears%5Cto%20%264%0A%5Cend%7Bcases%7D%0A%5C%5C%5C%5C%5C%5C%0AA%3D4000%5Cleft%281%2B%5Cfrac%7B0.02%7D%7B1%7D%5Cright%29%5E%7B1%5Ccdot%204%7D%5Cimplies%20A%3D4000%281.02%29%5E4%5Cimplies%20A%5Capprox%204329.73)
then she turns around and grabs those 4329.73 and put them in an account getting 8% APR I assume, so is annual compounding, for 7 years.
![\bf \qquad \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\to &\$4329.73\\ r=rate\to 8\%\to \frac{8}{100}\to &0.08\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{annually, thus once} \end{array}\to &1\\ t=years\to &7 \end{cases} \\\\\\ A=4329.73\left(1+\frac{0.08}{1}\right)^{1\cdot 7}\implies A=4329.73(1.08)^7\\\\\\ A\approx 7420.396](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Ctextit%7BCompound%20Interest%20Earned%20Amount%7D%0A%5C%5C%5C%5C%0AA%3DP%5Cleft%281%2B%5Cfrac%7Br%7D%7Bn%7D%5Cright%29%5E%7Bnt%7D%0A%5Cquad%20%0A%5Cbegin%7Bcases%7D%0AA%3D%5Ctextit%7Baccumulated%20amount%7D%5C%5C%0AP%3D%5Ctextit%7Boriginal%20amount%20deposited%7D%5Cto%20%26%5C%244329.73%5C%5C%0Ar%3Drate%5Cto%208%5C%25%5Cto%20%5Cfrac%7B8%7D%7B100%7D%5Cto%20%260.08%5C%5C%0An%3D%0A%5Cbegin%7Barray%7D%7Bllll%7D%0A%5Ctextit%7Btimes%20it%20compounds%20per%20year%7D%5C%5C%0A%5Ctextit%7Bannually%2C%20thus%20once%7D%0A%5Cend%7Barray%7D%5Cto%20%261%5C%5C%0At%3Dyears%5Cto%20%267%0A%5Cend%7Bcases%7D%0A%5C%5C%5C%5C%5C%5C%0AA%3D4329.73%5Cleft%281%2B%5Cfrac%7B0.08%7D%7B1%7D%5Cright%29%5E%7B1%5Ccdot%207%7D%5Cimplies%20A%3D4329.73%281.08%29%5E7%5C%5C%5C%5C%5C%5C%20A%5Capprox%207420.396)
add both amounts, and that's her investment for the 11 years.