In the derivation of the quadratic formula by completing the square, the equation (x+b over 2a)^2=-4ac+b^2 over 4a^2 is created
by forming a perfect square trinomial. What is the result of applying the square root property of equality to this equation?
2 answers:
Answer:
The result of applying the square root property of equality to this equation is
.
Step-by-step explanation:
Consider the provided equation.

As the above equation is formed by perfect square trinomial so simply applying the square root property as shown:

Isolate the variable x.

Hence, the result of applying the square root property of equality to this equation is
.
Answer:

Step-by-step explanation:
The given equation is

In the derivation of the quadratic formula by completing the square, the above equation is created by forming a perfect square trinomial.
Applying the square root property of equality to this equation, we get



Subtract
from both sides.


Therefore, the required equation is
.
You might be interested in
Answer:
You find if their less than or greater than
Step-by-step explanation:
when dividing or multiplying negative numbers switch sign.
Answer: I wanna say it's B
Step-by-step explanation: but I'm not completely sure.
Answer:
555
Step-by-step explanation:
Answer:
The numbers can be -4, -3, -2, -1, and 1